Removal and degradation of the fungicide dye malachite green from aqueous solution using the system wheat bran-Fomes sclerodermeus

The triphenylmethane dye malachite green (MG), commonly used as fungicide, was adsorbed onto wheat bran (WB) by using a batch technique. The effects of contact time, dye concentration and pH were investigated. The equilibrium was attained after 40 min of contact time irrespective of MG concentration...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Papinutti, L.
Otros Autores: Mouso, N., Forchiassin, F.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09060caa a22012377a 4500
001 PAPER-7046
003 AR-BaUEN
005 20230518203646.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33745223296 
024 7 |2 cas  |a lignin peroxidase, 42613-30-9; malachite green, 569-64-2; triphenylmethane derivative, 16371-43-0 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a EMTED 
100 1 |a Papinutti, L. 
245 1 0 |a Removal and degradation of the fungicide dye malachite green from aqueous solution using the system wheat bran-Fomes sclerodermeus 
260 |c 2006 
270 1 0 |m Papinutti, L.; Laboratorio de Micología Experimental, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Ciudad Autonoma de Buenos Aires, Argentina; email: leandru@bg.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Forgacs, E., Cserháti, T., Oros, G., Removal of synthetic dyes from wastewaters: a review (2004) Environ Int, 30, pp. 953-971 
504 |a Fessard, V., Godard, T., Huet, S., Mourot, A., Poul, J.M., Mutagenicity of malachite green and leucomalachite green in in vitro tests (1999) J Appl Toxicol, 19, pp. 421-430 
504 |a Papinutti, V.L., Forchiassin, F., Modification of malachite green by Fomes sclerodermeus and reduction of toxicity to Phanerochaete chrysosporium (2004) FEMS Microbiol Lett, 231, pp. 205-209 
504 |a El-Shafey, E., Cox, M., Pichugin, A.A., Appleton, Q., Application of a carbon sorbent for the removal of cadmium and other heavy metal ions from aqueous solution (2002) J Chem Technol Biotechnol, 77, pp. 429-436 
504 |a Singh, K.P., Mohan, D., Sinha, S., Tondon, G.S., Gosh, D., Color removal from wastewater using low-cost activated carbon derived from agricultural waste material (2003) Ind Eng Chem Res, 42, pp. 1965-1976 
504 |a Ofer, R., Yerachmiel, A., Shmuel, Y., Marine macroalgae as biosorbents for cadmium and nickel in water (2003) Water Environ Res, 75, pp. 246-253 
504 |a Adachi, A., Takagi, S., Okano, T., Adsorption and adsorption mechanism of rice bran for chloroform from tap water (2002) Chemosphere, 46, pp. 87-92 
504 |a Adachi, A., Yatani, Y., Okano, T., Efficiency of wheat bran removal of organochlorine compounds and benzene from solution (2003) Bull Environ Contam Toxicol, 71, pp. 375-378 
504 |a Bhattacharyya, K.G., Sharma, A., Kinetics and thermodynamics of Methylene Blue adsorption on neem (Azadirachta indica) leaf powder (2005) Dyes Pigments, 65, pp. 51-59 
504 |a Lee, C.K., Low, K.S., Chew, S.L., Removal of anionic dyes by water hyacinth (1999) Adv Environ Res, 3, pp. 343-351 
504 |a Hatakka, A., Lignin modifying enzymes from selected white-rot fungi: production and role in lignin degradation (1994) FEMS Microbiol Rev, 13, pp. 125-135 
504 |a Pointing, S.B., Feasibility of bioremediation by white-rot fungi (2001) Appl Microbiol Biotechnol, 57, pp. 20-33 
504 |a Papinutti, V.L., Diorio, L.A., Forchiassin, F., Production of laccase and manganese peroxidase by Fomes sclerodermeus grown on wheat bran (2003) J Ind Microbiol Biotechnol, 30, pp. 157-160 
504 |a Cha, C.J., Doerge, D.R., Cerniglia, C.E., Biotransformation of malachite green by the fungus Cunninghamella elegans (2001) Appl Environ Microbiol, 67, pp. 4358-4360 
504 |a Terebiznik, M.R., Pilosof, A.M.R., Biomass estimation in solid state fermentation by modelling dry matter weigh loss (1999) Biotechnol Tech, 13, pp. 215-219 
504 |a Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254 
504 |a Paszczynski, A., Crawford, R.L., Degradation of azo compounds by ligninases from Phanerochaete chrysosporium involvement of veratryl alcohol (1991) Biochem Biophys Res Commun, 178, pp. 1056-1063 
504 |a Paszczynski, A., Crawford, R.L., Huynh, V.-B., Manganese peroxidase of Phanerochaete chrysosporium: purification (1988) Methods Enzymol, 161, pp. 264-270 
504 |a Tien, M., Kirk, T.K., Lignin peroxidase of Phanerochaete chrysosporium (1988) Methods Enzymol, 161, pp. 238-249 
504 |a Malik, P.K., Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics (2004) J Hazard Mater, 113, pp. 81-88 
504 |a Mohan, D., Singh, K.P., Singh, G., Kumar, K., Removal of dyes from wastewater using fly ash, a low-cost adsorbent (2002) Ind Eng Chem Res, 41, pp. 3688-3695 
504 |a Wang, S., Boyjoo, Y., Choueib, A., Zhu, Z.H., Removal of dyes from aqueous solution using fly ash and red mud (2005) Water Res, 39, pp. 129-138 
520 3 |a The triphenylmethane dye malachite green (MG), commonly used as fungicide, was adsorbed onto wheat bran (WB) by using a batch technique. The effects of contact time, dye concentration and pH were investigated. The equilibrium was attained after 40 min of contact time irrespective of MG concentration. The pH of MG aqueous solution greatly influenced the adsorption capacity and intensity, it was found that maximum adsorption of dye occurred at pH range 7-9, where the amount of dye removed was nearly 90%. Data obtained on adsorption at different dye concentrations and pH range 4-7 were used to plot the Freundlich isotherms. WB with MG adsorbed at pH range 4-7 was used as substrate for the growth of the white rot fungi Fomes sclerodermeus and Phanerochaete chrysosporium. The presence of MG (nearly 24 mg g-1 dry WB) delayed the fungal growth. MG was completely degraded by F. sclerodermeus cultures at pH 5, in concordance with the highest ligninases production. Thus, pH values not only influenced the adsorption capacity of WB but they were also important for growth, enzyme production and finally, dye degradation. This technique should have broad applications in bioremediation processes of water and wastewater. © 2006 Elsevier Inc. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: This work was supported by grants from CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina, and Universidad de Buenos Aires. We thank Ernesto Lechner for fruitful suggestions. 
593 |a Laboratorio de Micología Experimental, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Ciudad Autonoma de Buenos Aires, Argentina 
690 1 0 |a ADSORPTION 
690 1 0 |a BIOREMEDIATION 
690 1 0 |a DYES 
690 1 0 |a LIGNINASES 
690 1 0 |a WHITE ROT FUNGI 
690 1 0 |a ADSORPTION 
690 1 0 |a BIOREMEDIATION 
690 1 0 |a CROPS 
690 1 0 |a DYES 
690 1 0 |a FUNGI 
690 1 0 |a METHANE 
690 1 0 |a PH EFFECTS 
690 1 0 |a SOLUTIONS 
690 1 0 |a ADSORPTION CAPACITY 
690 1 0 |a BATCH TECHNIQUES 
690 1 0 |a LIGNINASES 
690 1 0 |a MALACHITE GREEN (MG) 
690 1 0 |a FUNGICIDES 
690 1 0 |a FUNGICIDE 
690 1 0 |a LIGNIN PEROXIDASE 
690 1 0 |a MALACHITE GREEN 
690 1 0 |a TRIPHENYLMETHANE DERIVATIVE 
690 1 0 |a ACIDITY 
690 1 0 |a ADSORPTION 
690 1 0 |a ALKALINITY 
690 1 0 |a AQUEOUS SOLUTION 
690 1 0 |a ARTICLE 
690 1 0 |a BATCH PROCESS 
690 1 0 |a BIODEGRADATION 
690 1 0 |a BIOREMEDIATION 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a ENZYME SYNTHESIS 
690 1 0 |a FOMES SCLERODERMEUS 
690 1 0 |a FUNGUS CULTURE 
690 1 0 |a FUNGUS GROWTH 
690 1 0 |a ISOTHERM 
690 1 0 |a NONHUMAN 
690 1 0 |a PHANEROCHAETE 
690 1 0 |a WHEAT BRAN 
690 1 0 |a ADSORPTION 
690 1 0 |a DYES 
690 1 0 |a FARM CROPS 
690 1 0 |a FUNGI 
690 1 0 |a FUNGICIDES 
690 1 0 |a SOLUTIONS 
690 1 0 |a WHITE ROT FUNGI 
690 1 0 |a FOMES 
690 1 0 |a FUNGI 
690 1 0 |a PHANEROCHAETE CHRYSOSPORIUM 
690 1 0 |a TRITICUM AESTIVUM 
650 1 7 |2 spines  |a PH 
700 1 |a Mouso, N. 
700 1 |a Forchiassin, F. 
773 0 |d 2006  |g v. 39  |h pp. 848-853  |k n. 4  |p Enzyme Microb. Technol.  |x 01410229  |w (AR-BaUEN)CENRE-1003  |t Enzyme and Microbial Technology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33745223296&doi=10.1016%2fj.enzmictec.2006.01.013&partnerID=40&md5=90d6cd71ee95a5ec1f8130f3a82d0fff  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.enzmictec.2006.01.013  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01410229_v39_n4_p848_Papinutti  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01410229_v39_n4_p848_Papinutti  |y Registro en la Biblioteca Digital 
961 |a paper_01410229_v39_n4_p848_Papinutti  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 67999