Evolutionary history of the Asr gene family

The Asr gene family is widespread in higher plants. Most Asr genes are up-regulated under different environmental stress conditions and during fruit ripening. ASR proteins are localized in the nucleus and their likely function is transcriptional regulation. In cultivated tomato, we identified a nove...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Frankel, N.
Otros Autores: Carrari, F., Hasson, E., Iusem, N.D
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11855caa a22013577a 4500
001 PAPER-7032
003 AR-BaUEN
005 20230518203645.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33746488455 
024 7 |2 Molecular Sequence Numbers  |a GENBANK: AAC47854, AY217009, AY217014, AY496130, BAB19963, CAC86102, DQ058744, DQ058745, DQ058746, DQ058747, DQ058748, DQ058749, DQ058750, DQ058751, DQ058752, DQ058753, DQ058754, DQ058755, DQ058756, DQ058757, DQ058758, DQ058759, DQ058760, DQ058761, DQ058762, L20756, NM_210779, TC124842, TC158596, TC162125, TC165353, TC250893, TC253974, TC258618, TC258649, TC262475; 
024 7 |2 cas  |a Asr1 protein, Lycopersicon esculentum; Asr2 protein, Lycopersicon esculentum; Codon; DNA, Plant; Plant Proteins 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a GENED 
100 1 |a Frankel, N. 
245 1 0 |a Evolutionary history of the Asr gene family 
260 |c 2006 
270 1 0 |m Iusem, N.D.; Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; email: norbius@fbmc.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Akashi, H., Gene expression and molecular evolution (2001) Curr. Opin. Genet. Dev., 11, pp. 660-666 
504 |a Akashi, H., Eyre-Walker, A., Translational selection and molecular evolution (1998) Curr. Opin. Genet. Dev., 8, pp. 688-693 
504 |a Alba, R., Kelmenson, P.M., Cordonnier-Pratt, M.M., Pratt, L.H., The phytochrome gene family in tomato and the rapid differential evolution of this family in angiosperms (2000) Mol. Biol. Evol., 17, pp. 362-373 
504 |a Bovy, A., High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1 (2002) Plant Cell, 14, pp. 2509-2526 
504 |a Cakir, B., Agasse, A., Gaillard, C., Saumonneau, A., Delrot, S., Atanassova, R., A grape ASR protein involved in sugar and abscisic acid signaling (2003) Plant Cell, 15, pp. 2165-2180 
504 |a Chiapello, H., Lisacek, F., Caboche, M., Henaut, A., Codon usage and gene function are related in sequences of Arabidopsis thaliana (1998) Gene, 209, pp. GC1-GC38 
504 |a Dóczi, R., Kondrak, M., Kovacs, G., Beczner, F., Banfalvi, Z., Conservation of the drought-inducible DS2 genes and divergences from their ASR paralogues in solanaceous species (2005) Plant Physiol. Biochem., 43, pp. 269-276 
504 |a Eshed, Y., Abu-Abied, M., Saranga, Y., Zamir, D., Lycopersicon esculentum lines containing small overlapping introgressions from L. pennellii (1992) Theor. Appl. Genet., 83, pp. 1027-1034 
504 |a Finkelstein, R.R., Gibson, S.I., ABA and sugar interactions regulating development: cross-talk or voices in a crowd? (2002) Curr. Opin. Plant Biol., 5, pp. 26-32 
504 |a Frankel, N., Hasson, E., Iusem, N.D., Rossi, M.S., Adaptive evolution of water-stress induced gene Asr2 in Lycopersicon species dwelling in arid habitats (2003) Mol. Biol. Evol., 20, pp. 1955-1962 
504 |a Goes da Silva, F., Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple vitis species and development of a compendium of gene expression during berry development (2005) Plant Physiol., 139, pp. 574-597 
504 |a Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucleic Acids Symp. Ser., 41, pp. 95-98 
504 |a Hughes, A.L., Friedman, R., Expression patterns of duplicate genes in the developing root in Arabidopsis thaliana (2005) J. Mol. Evol., 60, pp. 247-256 
504 |a Kalifa, Y., Gilad, A., Konrad, Z., Zaccai, M., Scolnik, P.A., Bar-Zvi, D., The water- and salt-stress-regulated Asr1 (abscisic acid stress ripening) gene encodes a zinc-dependent DNA-binding protein (2004) Biochem. J., 381, pp. 373-378 
504 |a Kimura, M., (1983) The Neutral Theory of Molecular Evolution, , Cambridge University Press, Cambridge 
504 |a Kong, H., Leebens-Mack, J., Ni, W., dePamphilis, C.W., Ma, H., Highly heterogeneous rates of evolution in the SKP1 gene family in plants and animals: functional and evolutionary implications (2004) Mol. Biol. Evol., 21, pp. 117-128 
504 |a Kumar, S., Tamura, K., Jakobsen, I.B., Nei, M., (2001) MEGA2: Molecular Evolutionary Genetics Analysis Software, , Arizona State University, Tempe, Arizona 
504 |a Maskin, L., Differential expression of the members of the Asr gene family in tomato (Lycopersicon esculentum) (2001) Plant Sci., 161, pp. 739-746 
504 |a Nei, M., Gojobori, T., Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions (1986) Mol. Biol. Evol., 3, pp. 418-426 
504 |a Nei, M., Rooney, A.P., Concerted and Birth-and-Death Evolution of Multigene Families (2005) Annu. Rev. Genet., 39, pp. 121-152 
504 |a Ohta, T., Slightly deleterious substitutions in evolution (1973) Nature, 246, pp. 96-98 
504 |a Ohta, T., Role of gene duplication in evolution (1989) Genome, 31, pp. 304-310 
504 |a Quesada, H., Ramos-Onsins, S.E., Aguade, M., Birth-and-death evolution of the Cecropin multigene family in Drosophila (2005) J. Mol. Evol., 60, pp. 1-11 
504 |a Rossi, M.M., Iusem, N.D., Tomato genomic clone homologous to a gene encoding an ABA-induced protein (1994) Plant Physiol., 104, pp. 1073-1074 
504 |a Rossi, M.M., Lijavetzky, D., Bernacchi, D., Hopp, H.E., Iusem, N.D., Asr genes belong to a tomato gene family of at least three closely linked loci located to chromosome 4 (1996) Mol. Gen. Genet., 252, pp. 489-492 
504 |a Sawyer, S.A., Statistical tests for detecting gene conversion (1989) Mol. Biol. Evol., 6, pp. 526-538 
504 |a Treger, J.M., McEntee, K., Structure of the DNA damage-inducible gene DDR48 and evidence for its role in mutagenesis in Saccharomyces cerevisiae (1990) Mol. Cell. Biol., 10, pp. 3174-3184 
504 |a Wang, H.J., Hsu, C.M., Guang, Y.J., Wang, C.S., A lily pollen ASR protein localizes to both cytoplasm and nuclei requiring a nuclear localization signal (2005) Physiol. Plant., 123, pp. 314-320 
504 |a Xia, X., Xie, Z., DAMBE: data analysis in molecular biology and evolution (2001) J. Heredity, 92, pp. 371-373 
504 |a Yang, Z., PAML: a program package for phylogenetic analysis by maximum likelihood (1997) Comput. Appl. Biosci., 13, pp. 555-556 
504 |a Yang, Z., Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution (1998) Mol. Biol. Evol., 15, pp. 568-573 
504 |a Yang, C.Y., Chen, Y.C., Jauh, G.Y., Wang, C.S., A Lily ASR Protein Involves Abscisic Acid Signaling and Confers Drought and Salt Resistance in Arabidopsis (2005) Plant Physiol., 139, pp. 836-846 
520 3 |a The Asr gene family is widespread in higher plants. Most Asr genes are up-regulated under different environmental stress conditions and during fruit ripening. ASR proteins are localized in the nucleus and their likely function is transcriptional regulation. In cultivated tomato, we identified a novel fourth family member, named Asr4, which maps close to its sibling genes Asr1-Asr2-Asr3 and displays an unshared region coding for a domain containing a 13-amino acid repeat. In this work we were able to expand our previous analysis for Asr2 and investigated the coding regions of the four known Asr paralogous genes in seven tomato species from different geographic locations. In addition, we performed a phylogenetic analysis on ASR proteins. The first conclusion drawn from this work is that tomato ASR proteins cluster together in the tree. This observation can be explained by a scenario of concerted evolution or birth and death of genes. Secondly, our study showed that Asr1 is highly conserved at both replacement and synonymous sites within the genus Lycopersicon. ASR1 protein sequence conservation might be associated with its multiple functions in different tissues while the low rate of synonymous substitutions suggests that silent variation in Asr1 is selectively constrained, which is probably related to its high expression levels. Finally, we found that Asr1 activation under water stress is not conserved between Lycopersicon species. © 2006 Elsevier B.V. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: We thank the Tomato Genetics Resource Center for providing the seeds of the tomato wild populations. This work was supported by grants from the Universidad de Buenos Aires. N.F. holds a fellowship from CONICET, Argentina. F.C., E.H. and N.D.I. are members of the Carrera del Investigador Científico, CONICET, Argentina. Appendix A 
593 |a Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Instituto de Biotecnología, CICVyA, INTA, Castelar, Buenos Aires, Argentina 
593 |a Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a CODON USAGE 
690 1 0 |a EXPRESSION PATTERN 
690 1 0 |a GENE CONVERSION 
690 1 0 |a LYCOPERSICON 
690 1 0 |a WATER STRESS 
690 1 0 |a AMINO ACID SUBSTITUTION 
690 1 0 |a ARTICLE 
690 1 0 |a CODON USAGE 
690 1 0 |a FRUIT RIPENING 
690 1 0 |a GENE ACTIVATION 
690 1 0 |a GENE FUNCTION 
690 1 0 |a GENE IDENTIFICATION 
690 1 0 |a GENE SEQUENCE 
690 1 0 |a GENETIC CONSERVATION 
690 1 0 |a GENETIC VARIABILITY 
690 1 0 |a MOLECULAR EVOLUTION 
690 1 0 |a MULTIGENE FAMILY 
690 1 0 |a NUCLEOTIDE SEQUENCE 
690 1 0 |a PARALOGY 
690 1 0 |a PLANT STRESS 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN DOMAIN 
690 1 0 |a PROTEIN FUNCTION 
690 1 0 |a PROTEIN LOCALIZATION 
690 1 0 |a TOMATO 
690 1 0 |a TRANSCRIPTION REGULATION 
690 1 0 |a UPREGULATION 
690 1 0 |a WATER STRESS 
690 1 0 |a AMINO ACID SEQUENCE 
690 1 0 |a BASE SEQUENCE 
690 1 0 |a CODON 
690 1 0 |a DNA, PLANT 
690 1 0 |a EVOLUTION, MOLECULAR 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a GENES, PLANT 
690 1 0 |a LYCOPERSICON ESCULENTUM 
690 1 0 |a MOLECULAR SEQUENCE DATA 
690 1 0 |a MULTIGENE FAMILY 
690 1 0 |a ORYZA SATIVA 
690 1 0 |a PHYLOGENY 
690 1 0 |a PLANT PROTEINS 
690 1 0 |a PLANTS 
690 1 0 |a SEQUENCE HOMOLOGY, AMINO ACID 
690 1 0 |a SOLANACEAE 
690 1 0 |a EMBRYOPHYTA 
690 1 0 |a LYCOPERSICON 
690 1 0 |a LYCOPERSICON ESCULENTUM 
700 1 |a Carrari, F. 
700 1 |a Hasson, E. 
700 1 |a Iusem, N.D. 
773 0 |d 2006  |g v. 378  |h pp. 74-83  |k n. 1-2  |p Gene  |x 03781119  |w (AR-BaUEN)CENRE-4803  |t Gene 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33746488455&doi=10.1016%2fj.gene.2006.05.010&partnerID=40&md5=1597517d744c99d8f67c87036b47bf2a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.gene.2006.05.010  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03781119_v378_n1-2_p74_Frankel  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03781119_v378_n1-2_p74_Frankel  |y Registro en la Biblioteca Digital 
961 |a paper_03781119_v378_n1-2_p74_Frankel  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 67985