Scarring by homoclinic and heteroclinic orbits

In addition to the well-known scarring effect of periodic orbits, we show here that homoclinic and heteroclinic orbits, which are cornerstones in the theory of classical chaos, also scar eigenfunctions of classically chaotic systems when associated closed circuits in phase space are properly quantiz...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Wisniacki, D.A
Otros Autores: Vergini, E., Benito, R.M, Borondo, F.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05654caa a22007577a 4500
001 PAPER-6983
003 AR-BaUEN
005 20230518203642.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33748329625 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PRLTA 
100 1 |a Wisniacki, D.A. 
245 1 0 |a Scarring by homoclinic and heteroclinic orbits 
260 |c 2006 
270 1 0 |m Wisniacki, D.A.; Departamento de Física J. J. Giambiagi, FCEN, Ciudad Universitaria, Pabellón 1, 1428 Buenos Aires, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Heller, E.J., (1984) Phys. Rev. Lett., 53, p. 1515. , PRLTAO 0031-9007 10.1103/PhysRevLett.53.1515 
504 |a Bogomolny, E.B., (1988) Physica (Amsterdam), 31, p. 169. , PDNPDT 0167-2789 10.1016/0167-2789(88)90075-9 
504 |a Berry, M.V., (1989) Proc. R. Soc. A, 432, p. 219. , PRLAAZ 0080-4630 
504 |a Ozorio De Almeida, A.M., (1989) Nonlinearity, 2, p. 519. , NONLE5 0951-7715 10.1088/0951-7715/2/4/002 
504 |a Tomsovic, S., Heller, E.J., (1993) Phys. Rev. Lett., 70, p. 1405. , PRLTAO 0031-9007 10.1103/PhysRevLett.70.1405 
504 |a Kaplan, L., (1999) Nonlinearity, 12, p. 1. , NONLE5 0951-7715 10.1088/0951-7715/12/2/009 
504 |a Keating, J.P., Prado, S.D., (2001) Proc. R. Soc. A, 457, p. 1855. , PRLAAZ 0080-4630 10.1098/rspa.2001.0790 
504 |a Wilkinson, P.B., (1996) Nature (London), 380, p. 608. , NATUAS 0028-0836 10.1038/380608a0 
504 |a Nãckel, J.U., Stone, A.D., (1997) Nature (London), 385, p. 45. , NATUAS. 0028-0836. 10.1038/385045a0 
504 |a Gmachl, C., (1998) Science, 280, p. 1556. , SCIEAS 0036-8075 10.1126/science.280.5369.1556 
504 |a Harayama, T., (2003) Phys. Rev. E, 67, pp. 015207R. , PLEEE8 1063-651X 10.1103/PhysRevE.67.015207 
504 |a Heller, E.J., (1991) Chaos and Quantum Physics, , edited by M.J. Giannoni, A. Voros, and J. Zinn-Justin (Elsevier, New York 
504 |a Heller, E.J., Oâconnor, P.W., Gehlen, J., (1989) Phys. Scr., 40, p. 354. , PHSTBO 0031-8949 
504 |a Vergini, E.G., (2000) J. Phys. A, 33, p. 4709. , JPHAC5 0305-4470 10.1088/0305-4470/33/25/311 
504 |a Vergini, E.G., Carlo, G.G., (2000) J. Phys. A, 33, p. 4717. , JPHAC5 0305-4470 10.1088/0305-4470/33/25/312 
504 |a Wisniacki, D.A., Borondo, F., Vergini, E., Benito, R.M., (2001) Phys. Rev. E, 63, p. 066220. , PLEEE8 1063-651X 10.1103/PhysRevE.63.066220 
504 |a De Polavieja, G.G., Borondo, F., Benito, R.M., (1994) Phys. Rev. Lett., 73, p. 1613. , PRLTAO 0031-9007 10.1103/PhysRevLett.73.1613 
504 |a Vergini, E.G., Schneider, D., (2005) J. Phys. A, 38, p. 587. , JPHAC5 0305-4470 10.1088/0305-4470/38/3/005 
504 |a Ozorio De Almeida, A.M., (1988) Hamiltonian Systems: Chaos and Quantization, , Cambridge University Press, Cambridge, England 
504 |a Vergini, E.G., Carlo, G.G., (2001) J. Phys. A, 34, p. 4525. , JPHAC5 0305-4470 10.1088/0305-4470/34/21/308 
504 |a Wisniacki, D.A., Vergini, E., Benito, R.M., Borondo, F., (2005) Phys. Rev. Lett., 94, p. 054101. , PRLTAO 0031-9007 10.1103/PhysRevLett.94.054101 
504 |a Wisniacki, D.A., Vergini, E., Benito, R.M., Borondo, F., (2004) Phys. Rev. E, 70, pp. 035202R. , PLEEE8 1063-651X 10.1103/PhysRevE.70.035202 
520 3 |a In addition to the well-known scarring effect of periodic orbits, we show here that homoclinic and heteroclinic orbits, which are cornerstones in the theory of classical chaos, also scar eigenfunctions of classically chaotic systems when associated closed circuits in phase space are properly quantized, thus introducing strong quantum correlations. The corresponding quantization rules are also established. This opens the door for developing computationally tractable methods to calculate eigenstates of chaotic systems. © 2006 The American Physical Society.  |l eng 
593 |a Departamento de Física J. J. Giambiagi, FCEN, Ciudad Universitaria, Pabellón 1, 1428 Buenos Aires, Argentina 
593 |a Departamento de Física, Comisión Nacional de Energía Atómica, Avenida del Libertador 8250, 1429 Buenos Aires, Argentina 
593 |a Grupo de Sistemas Complejos, Departamento de Física, Universidad Politécnica de Madrid, 28040 Madrid, Spain 
593 |a Departamento de Química C-IX, Universidad Autónoma de Madrid, Cantoblanco, 28049-Madrid, Spain 
690 1 0 |a CHAOS THEORY 
690 1 0 |a COMPUTATIONAL METHODS 
690 1 0 |a CORRELATION METHODS 
690 1 0 |a EIGENVALUES AND EIGENFUNCTIONS 
690 1 0 |a QUANTUM THEORY 
690 1 0 |a CHAOTIC SYSTEMS 
690 1 0 |a HETEROCLINIC ORBITS 
690 1 0 |a PHASE SPACE 
690 1 0 |a QUANTUM CORRELATIONS 
690 1 0 |a ATOMIC PHYSICS 
700 1 |a Vergini, E. 
700 1 |a Benito, R.M. 
700 1 |a Borondo, F. 
773 0 |d 2006  |g v. 97  |k n. 9  |p Phys Rev Lett  |x 00319007  |w (AR-BaUEN)CENRE-386  |t Physical Review Letters 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33748329625&doi=10.1103%2fPhysRevLett.97.094101&partnerID=40&md5=0669932500020f83e679a6f72c92f289  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevLett.97.094101  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00319007_v97_n9_p_Wisniacki  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00319007_v97_n9_p_Wisniacki  |y Registro en la Biblioteca Digital 
961 |a paper_00319007_v97_n9_p_Wisniacki  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 67936