Heme protein oxygen affinity regulation exerted by proximal effects

Heme proteins are found in all living organisms and are capable of performing a wide variety of tasks, requiring in many cases the binding of diatomic ligands, namely, O2, CO, and/or NO. Therefore, subtle regulation of these diatomic ligands' affinity is one of the key issues for determining a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Capece, L.
Otros Autores: Marti, M.A, Crespo, A., Doctorovich, F., Estrin, D.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11720caa a22015617a 4500
001 PAPER-6971
003 AR-BaUEN
005 20230518203641.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33749179197 
024 7 |2 cas  |a carbon monoxide, 630-08-0; leghemoglobin, 52365-25-0, 53096-11-0; nitric oxide, 10102-43-9; oxygen, 7782-44-7; porphyrin, 24869-67-8; Ferrous Compounds; Histidine, 71-00-1; Leghemoglobin; Myoglobin; Oxygen, 7782-44-7 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JACSA 
100 1 |a Capece, L. 
245 1 0 |a Heme protein oxygen affinity regulation exerted by proximal effects 
260 |c 2006 
270 1 0 |m Estrin, D.A.; Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina; email: dario@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Kundu, S., Trent III, J.T., Hargrove, M.S., (2003) Trends Plant Sci., 8, pp. 387-393 
504 |a Kadish, K.M., Smith, K.M., Guilard, R., (2000) The Porphyrin Handbook, 4. , Academic Press: San Diego 
504 |a Simonneaux, G., Bondon, A., (2005) Chem. Rev., 105, pp. 2627-2646 
504 |a Shaik, S., Kumar, D., De Visser, S.P., Altun, A., Thiel, W., (2005) Chem. Rev., 105, pp. 2279-2328 
504 |a Jain, R., Chan, M.K., (2003) J. Biol. Inorg. Chem., 8, pp. 1-11 
504 |a Olson, J.S., Phillips Jr., G.N., (1997) J. Biol. Inorg. Chem., 2, pp. 544-552 
504 |a Voet, D., Voet, J.G., (1995) Biochemistry, , John Wiley and Sons: New York, Chichester, Brisbane, Toronto, Singapore 
504 |a Estrin, D.A., Scherlis, D.A., (2002) Int. J. Quantum Chem., 87, pp. 158-166 
504 |a Perutz, M.F., Fermi, G., Luisi, B., (1987) Acc. Chem. Res., 20, pp. 309-321 
504 |a Satoru, U., Eich, R., Shibayama, N., Olson, J.S., Morimoto, H., (1998) J. Biol. Chem., 273, pp. 23150-23159 
504 |a Rydberg, P., Sigfridsson, E., Ryde, U., (2004) J. Biol. Inorg. Chem., 9, pp. 203-223 
504 |a Sigfridsson, E., Ryde, U., (2002) J. Inorg. Biochem., 91, pp. 101-115 
504 |a Tangen, E., Svadberg, A., Ghosh, A., (2005) Inorg. Chem., 44, pp. 7802-7805 
504 |a Spiro, T.G., Kozlowski, P.M., (2001) Acc. Chem. Res., 34, pp. 137-144 
504 |a Sigfridsson, E., Ryde, U., (1999) J. Biol. Inorg. Chem., 4, pp. 99-110 
504 |a Scherlis, D.A., Estrin, D.A., (2001) J. Am. Chem. Soc., 123, pp. 8436-8437 
504 |a Phillips, G.N., Teodoro, M.L., Li, T., Smith, B., Olson, J.S., (1999) J. Phys. Chem. B, 103, pp. 8817-8829 
504 |a Milani, M., Pesce, A., Nardini, M., Ouellet, H., Ouellet, Y., Dewilde, S., Bocedi, A., Bolognesi, M., (2005) J. Inorg. Biochem., 99, pp. 97-109 
504 |a Cutruzzolà, F., Travaglini Allocatelli, C., Ascenzi, P., Bolognesi, M., Sligar, S.G., Brunori, M., (1991) FEBS Lett., 282, pp. 281-284 
504 |a Kloek, A.P., Yang, J., Mathews, F.S., Goldberg, D.E., (1993) J. Biol. Chem., 268, pp. 17669-17671 
504 |a Kundu, S., Blouin, G.C., Premer, S.A., Sarath, G., Olson, J.S., Hargrove, M.S., (2004) Biochemistry, 43, pp. 6241-6252 
504 |a Kundu, S., Snyder, B., Das, K., Chowdhury, P., Park, J., Petrich, J.W., Hargrove, M.S., (2002) Proteins, 46, pp. 268-277 
504 |a Franzen, S., (2001) J. Am. Chem. Soc., 123, pp. 12578-12589 
504 |a Narula, S.S., Dalvit, C., Appleby, C.A., Wright, P.E., (1988) Eur. J. Biochem., 178, pp. 419-435 
504 |a Goodin, D.B., McRee, D.E., (1993) Biochemistry, 32, pp. 3313-3324 
504 |a Vogel, K.M., Spiro, T.G., Shelver, D., Thorsteinsson, M.V., Roberts, G.P., (1999) Biochemistry, 38, pp. 2679-2687 
504 |a Oertling, W.A., Kean, R.T., Wever, R., Babcock, G.T., (1990) Inorg. Chem., 29, pp. 2633-2645 
504 |a Quillin, M.L., Arduini, R.M., Olson, J.S., Phillips Jr., G.N., (1993) J. Mol. Biol., 234, pp. 140-155 
504 |a Hargrove, M.S., Barry, J.K., Brucker, E.A., Berry, M.B., Phillips Jr., G.N., Olson, J.S., Arredondo-Peter, R., Sarath, G., (1997) J. Mol. Biol., 266, pp. 1032-1042 
504 |a Gong, W., Hao, B., Mansy, S.S., Gonzalez, G., Gilles-Gonzalez, M.A., Chan, M.K., (1998) Proc. Natl. Acad. Sci. U.S.A., 95, pp. 15177-15182 
504 |a Liddington, R., Derewenda, Z., Dodson, E., Hubbard, R., Dodson, G., (1992) J. Mol. Biol., 228, pp. 551-579 
504 |a Gajhede, M., Schuller, D.J., Henriksen, A., Smith, A.T., Poulos, T.L., (1997) Nat. Struct. Biol., 4, pp. 1032-1038 
504 |a Rablem, P.R., Lockman, J.W., Jorgensen, W.L., (1998) J. Phys. Chem. A, 102, pp. 3782-3797 
504 |a Crespo, A., Scherlis, D.A., Martí, M.A., Ordejón, P., Roitberg, A.E., Estrin, D.A., (2003) J. Phys. Chem. B, 107, pp. 13728-13736 
504 |a Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., (2002) J. Phys.: Condens. Matter, 14, pp. 2745-2779 
504 |a Martí, M.A., Crespo, A., Bari, S.E., Doctorovich, F.A., Estrin, D.A., (2004) J. Phys. Chem. B, 108, pp. 18073-18080 
504 |a Guallar, V., Friesner, R.A., (2004) J. Am. Chem. Soc., 126, pp. 8501-8508 
504 |a Schoneboom, J.C., Lin, H., Reuter, N., Thiel, W., Cohen, S., Ogliaro, F., Shaik, S., (2002) J. Am. Chem. Soc., 124, pp. 8142-8151 
504 |a Rovira, C., Kunc, K., Hutter, J., Ballone, P., Parrinello, M., (1997) J. Phys. Chem. A, 101, pp. 8914-8925 
504 |a Martí, M.A., Capece, L., Crespo, A., Doctorovich, F., Estrin, D.A., (2005) J. Am. Chem. Soc., 127, pp. 7721-7728 
504 |a Crespo, A., Martí, M.A., Kalko, S.G., Morreale, A., Orozco, M., Gelpi, J.L., Estrin, D.A., (2005) J. Am. Chem. Soc., 127, pp. 4433-4444 
504 |a Martí, M., Scherlis, D.A., Doctorovich, F., Ordejón, P., Estrin, D., (2003) J. Biol. Inorg. Chem., 8, pp. 595-600 
504 |a Troullier, N., Martins, J.L., (1991) Phys. Rev. B, 43, pp. 1993-2006 
504 |a Louie, S.G., Froyen, S., Cohen, M.L., (1982) Phys. Rev. B, 26, pp. 1738-1742 
504 |a Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, pp. 3865-3868 
504 |a Crespo, A., Martí, M.A., Estrin, D.A., Roitberg, A.E., (2005) J. Am. Chem. Soc., 127, pp. 6940-6941 
504 |a Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.R., Cheatham III, T.E., DeBolt, S., Ferguson, D., Kollman, P., (1995) Comp. Phys. Commun., 91, pp. 1-41 
504 |a Wang, J., Cieplak, P., Kollman, P.A., (2000) J. Comput. Chem., 21, pp. 1049-1074 
504 |a Eichinger, M., Tavan, P., Hutter, J., Parrinello, M., (1999) J. Chem. Phys., 110, pp. 10452-10467 
504 |a Rovira, C., Schulze, B., Eichinger, M., Evanseck, J.D., Parrinello, M., (2001) Biophys. J., 81, pp. 435-445 
504 |a Lukat-Rodgers, G.S., Rodgers, K.R., (1997) Biochemistry, 36, pp. 4178-4187 
504 |a Balland, V., Bouzhir-Sima, L., Kiger, L., Marden, M.C., Vos, M.H., Liebl, U., Mattioli, T.A., (2005) J. Biol. Chem., 280, pp. 15279-15288 
504 |a Nagai, K., Welborn, C., Dolphin, D., Kitagawa, T., (1980) Biochemistry, 19, pp. 4755-4761 
504 |a Ascenzi, P., Brunori, M., Coletta, M., Desideri, A., (1989) Biochem. J., 258, pp. 473-478 
504 |a Shiro, Y., Iizuka, T., Marubayachi, K., Ogura, T., Kitagawa, T., Balasubramanian, S., Boxer, S.G., (1994) Biochemistry, 33, pp. 14986-14992 
504 |a Jones, D.K., Patel, N., Raven, E.L., (2002) Arch. Biochem. Biophys., 400, pp. 111-117 
504 |a Jeyarajah, S., Proniewicz, L.M., Bronder, H., Kincaid, J.R., (1994) J. Biol. Chem., 269, pp. 31047-31050 
504 |a Irwin, M.J., Armstrong, R.S., Wright, P.E., (1981) FEBS Lett., 133, pp. 239-243 
504 |a Scott, E.E., Gibson, Q.H., Olson, J.S., (2001) J. Biol. Chem., 276, pp. 5177-5188 
504 |a Chan, N.L., Kavanaugh, J.S., Rogers, P.H., Arnone, A., (2004) Biochemistry, 43, pp. 118-132 
520 3 |a Heme proteins are found in all living organisms and are capable of performing a wide variety of tasks, requiring in many cases the binding of diatomic ligands, namely, O2, CO, and/or NO. Therefore, subtle regulation of these diatomic ligands' affinity is one of the key issues for determining a heme protein's function. This regulation is achieved through direct H-bond interactions between the bound ligand and the protein, and by subtle tuning of the intrinsic heme group reactivity. In this work, we present an investigation of the proximal regulation of oxygen affinity in Fe(II) histidine coordinated heme proteins by means of computer simulation. Density functional theory calculations on heme model systems are used to analyze three proximal effects: charge donation, rotational position, and distance to the heme porphyrin plane of the proximal histidine. In addition, hybrid quantum-classical (QM-MM) calculations were performed in two representative proteins: myoglobin and leghemoglobin. Our results show that all three effects are capable of tuning the Fe-O2 bond strength in a cooperative way, consistently with the experimental data on oxygen affinity. The proximal effects described herein could operate in a large variety of O2-binding heme proteins-in combination with distal effects-and are essential to understand the factors determining a heme protein's O2 affinity. © 2006 American Chemical Society.  |l eng 
593 |a Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina 
690 1 0 |a HEMOGLOBIN 
690 1 0 |a HYDROGEN BONDS 
690 1 0 |a OXYGEN 
690 1 0 |a PROBABILITY DENSITY FUNCTION 
690 1 0 |a QUANTUM THEORY 
690 1 0 |a DENSITY FUNCTIONAL THEORY 
690 1 0 |a HEME PROTEINS 
690 1 0 |a LIGANDS 
690 1 0 |a OXYGEN AFFINITY 
690 1 0 |a PROTEINS 
690 1 0 |a CARBON MONOXIDE 
690 1 0 |a HEMOPROTEIN 
690 1 0 |a HISTIDINE DERIVATIVE 
690 1 0 |a IRON DERIVATIVE 
690 1 0 |a LEGHEMOGLOBIN 
690 1 0 |a MYOGLOBIN 
690 1 0 |a NITRIC OXIDE 
690 1 0 |a OXYGEN 
690 1 0 |a PORPHYRIN 
690 1 0 |a ARTICLE 
690 1 0 |a BINDING AFFINITY 
690 1 0 |a CALCULATION 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a DENSITY FUNCTIONAL THEORY 
690 1 0 |a HYDROGEN BOND 
690 1 0 |a LIGAND BINDING 
690 1 0 |a OXYGEN AFFINITY 
690 1 0 |a PROTEIN BINDING 
690 1 0 |a PROTEIN FUNCTION 
690 1 0 |a BINDING SITES 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a FERROUS COMPOUNDS 
690 1 0 |a HISTIDINE 
690 1 0 |a KINETICS 
690 1 0 |a LEGHEMOGLOBIN 
690 1 0 |a MODELS, MOLECULAR 
690 1 0 |a MYOGLOBIN 
690 1 0 |a OXYGEN 
690 1 0 |a QUANTUM THEORY 
690 1 0 |a THERMODYNAMICS 
700 1 |a Marti, M.A. 
700 1 |a Crespo, A. 
700 1 |a Doctorovich, F. 
700 1 |a Estrin, D.A. 
773 0 |d 2006  |g v. 128  |h pp. 12455-12461  |k n. 38  |p J. Am. Chem. Soc.  |x 00027863  |w (AR-BaUEN)CENRE-19  |t Journal of the American Chemical Society 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33749179197&doi=10.1021%2fja0620033&partnerID=40&md5=5e43bdb8c94b0d65e9bd6addd0bf4fc4  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/ja0620033  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00027863_v128_n38_p12455_Capece  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00027863_v128_n38_p12455_Capece  |y Registro en la Biblioteca Digital 
961 |a paper_00027863_v128_n38_p12455_Capece  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 67924