Detection and discrimination of phenol and primary alcohols in water using electronic noses

Electronic nose methodology was used for discriminating between samples of n-primary alcohols and phenol in water. An electronic nose device developed at our laboratory was applied to detect the vapors from the samples. The device consists of 10 nonspecific gas sensors based on tin-dioxide, whose el...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Diz, V.
Otros Autores: Cassanello, M., Negri, R.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09979caa a22011897a 4500
001 PAPER-6967
003 AR-BaUEN
005 20230518203641.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33749417294 
024 7 |2 cas  |a alcohol, 64-17-5; butanol, 35296-72-1, 71-36-3; decanol, 112-30-1, 36729-58-5; octanol, 111-87-5, 29063-28-3; oxide, 16833-27-5; phenol, 108-95-2, 3229-70-7; tin, 14314-35-3, 7440-31-5; water, 7732-18-5; Alcohols; Phenol, 108-95-2; Water Pollutants, Chemical 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a ESTHA 
100 1 |a Diz, V. 
245 1 0 |a Detection and discrimination of phenol and primary alcohols in water using electronic noses 
260 |c 2006 
270 1 0 |m Negri, R.M.; Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Buenos Aires, Argentina; email: rmn@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Pratt, G.C., Bock, D., Stock, T.H., Morandi, M., Adgate, J.L., Ramachandran, G., Mongin, S.J., Sexton, K., A field comparison of volatile organic compound measurements using passive organic vapor monitors and stainless steel canisters (2005) Environ. Sci. Technol., 39, pp. 3261-3268 
504 |a Jiang, H., Fang, Y., Fu, Y., Guo, Q.-X., Studies on the extraction of phenol in wastewater (2003) J. Hazard. Mater., B, 101, pp. 179-190 
504 |a Poulopoulos, S.G., Voutsas, E.C., Grigoropoulou, H.P., Philippopoulos, C.J., Stripping as a preatreatment process of industrial oily wastewater (2005) J. Hazard. Mater., B, 117, pp. 135-139 
504 |a Gardner, J.W., Bartlett, P., (1999) Electronic Noses: Principles and Applications, , Oxford University Press: Oxford 
504 |a Romain, A.C., Nicolas, J., Andre, P., In situ measurements of olfaction pollution with inorganic semiconductors: Limitations due to the influence of humidity and temperature (1997) Semin. Food Anal., 2, pp. 283-296 
504 |a Bourgeois, W., Romain, A.C., Nicolas, J., Stuetz, R., The use of sensor arrays for environmental monitoring. Interests and limitations (2003) J. Environ. Monit., 5, pp. 852-858 
504 |a Nicolas, J., Romain, A.C., Establishing the limit of detection and the resolution limits of odorous sources in the environment for an array of metal oxide gas sensors (2004) Sens. Actuators, B, 99, pp. 384-392 
504 |a Albert, K.J., Myrick, M.L., Brown, S.B., Dale, L.J., Milanovich, F.P., Walt, D.R., Field-deployable sniffer for 2,4-dinitrotoluene detection (2001) Environ. Sci. Technol., 35, pp. 3193-3200 
504 |a Stuetz, R.M., Fenner, R.A., Engin, G., Characterisation of waste-water using an electronic nose (1999) Water Res., 33, pp. 442-452 
504 |a Dewettinck, T., Van Hege, K., Verstraete, W., The electronic nose as a rapid sensor for volatile compounds in treated domestic wastewater (2001) Water Res., 35, pp. 2475-2483 
504 |a Patel, S.V., Mlsna, T.E., Fruhberger, B., Klaassen, E., Cemalovic, S., Baselt, D.R., Chemicapacitive microsensors for volatile organic compound detection (2003) Sens. Actuators, B, 96, pp. 541-553 
504 |a Wanekaya, A.K., Uematsu, M., Breimer, M., Sadik, O.A., Multicomponent analysis of alcohol vapors using integrated gas chromatography with sensor arrays (2005) Sens. Actuators, B, 110, pp. 41-48 
504 |a McCorkle, D.L., Warmack, R.J., Patel, S.V., Mlsna, T., Hunter, S.R., Ferrell, T.L., Ethanol vapor detection in aqueous environments using micro-capacitors and dielectric polymers (2005) Sens. Actuators, B, 107, pp. 892-903 
504 |a Teja, A.S., Gupta, A.K., Bullock, K.R., Chai, X.-S., Zhu, J.Y., Henry's constants of methanol in aqueous systems containing salts (2001) Fluid Phase Equilib., 185, pp. 265-274 
504 |a O'Connell, M., Valdora, G., Peltzer, G., Negri, R.M., A practical approach for fish freshness determinations using a portable electronic nose (2001) Sens. Actuators B, 80, pp. 149-154 
504 |a Branca, A., Simonian, P., Ferrante, M., Novas, E., Negri, R.M., Electronic nose based discrimination of a perfumery compound in a fragrance (2003) Sens. Actuators, B, 92, pp. 222-227 
504 |a Monge, M.E., Bullone, D., Giacomazza, D., Bernik, D.L., Negri, R.M., Detection of flavour release from pectin gels using e-noses (2004) Sens. Actuators, B, 101, pp. 28-38 
504 |a Lovino, M., Cardinal, M.F., Zubiri, D.B.V., Bernik, D.L., Electronic nose screening of ethanol release during sol-gel encapsulation. A novel noninvasive method to test silica polymerisation (2005) Biosens. Bioelectron., 21, pp. 857-862 
504 |a Langenheim, M., Lovino, M., Monge, M.E., Mizrahi, D., Negri, R.M., Trends towards an electronic nose-electronic tongue fusion applied to discrimination of wines (2005) 6 Czech-Argentine Biennale, "Interdisciplinary Aspects of Human-Machine Co-existence and Co-operation", , Prague, July 2-5 
504 |a Jurs, P.C., Bakken, G.A., McClelland, H.E., Computational methods for the analysis of chemical sensor array data from volatile analytes (2000) Chem. Rev., 100, pp. 2649-2678 
504 |a Jollife, I.T., (1986) Principal Component Analysis, , Springer-Verlag: New York 
504 |a Doleman, B.J., Lewis, N.S., Comparison of odor detection thresholds and odor discriminablities of a conducting polymer composite electronic nose versus mammalian olfaction (2001) Sens. Actuators, B, 72, pp. 41-50 
504 |a Materna, K., Milosz, I., Miesiac, I., Cote, G., Szymanowski, Removal of phenols from aqueous streams by the cloud point extraction technique with oxyethylated methyl dodecanoates as surfactants (2001) Environ. Sci. Technol., 35, pp. 2341-2346 
504 |a Huub, H.J., Cox, T.S., Zarook, M.S., Deshusses, M.A., Thermophilic biotrickling filtration of ethanol vapors (2001) Environ. Sci. Technol., 35, pp. 2612-2619 
520 3 |a Electronic nose methodology was used for discriminating between samples of n-primary alcohols and phenol in water. An electronic nose device developed at our laboratory was applied to detect the vapors from the samples. The device consists of 10 nonspecific gas sensors based on tin-dioxide, whose electrical conductivity change when exposed to the vapors. The whole set of responses constitutes a fingerprint associated with the sample for the particular array of sensors. Using this method, we could differentiate among n-primary alcohols, pure phenol, and aqueous dilutions of phenol. Dilutions of primary alcohols and phenol of 1, 3, 5, and 10% (v/v) were assayed. The fingerprints of the dilutions are similar to that of the respective pure (not diluted) alcohol, but with lower signal intensities. Principal component analysis and cluster analysis were performed in order to explore the feasibility of discriminating among the samples. Dilutions of phenol were successfully discriminated from those of primary alcohols. Discrimination of n-octanol and n-decanol from the other alcohols, including phenol, was also achieved. The results suggest that it is possible to discriminate among dilutions of phenol in water and to give an approximate gross estimation of phenol concentration in water. © 2006 American Chemical Society.  |l eng 
593 |a Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a AQUEOUS DILUTIONS 
690 1 0 |a CLUSTER ANALYSIS 
690 1 0 |a FINGERPRINTS 
690 1 0 |a ALCOHOLS 
690 1 0 |a CONCENTRATION (PROCESS) 
690 1 0 |a PHENOLS 
690 1 0 |a PRINCIPAL COMPONENT ANALYSIS 
690 1 0 |a WATER POLLUTION 
690 1 0 |a WATER ANALYSIS 
690 1 0 |a ALCOHOL 
690 1 0 |a BUTANOL 
690 1 0 |a DECANOL 
690 1 0 |a OCTANOL 
690 1 0 |a OXIDE 
690 1 0 |a PHENOL 
690 1 0 |a TIN 
690 1 0 |a WATER 
690 1 0 |a ALCOHOLS 
690 1 0 |a CONCENTRATION (PROCESS) 
690 1 0 |a PHENOLS 
690 1 0 |a PRINCIPAL COMPONENT ANALYSIS 
690 1 0 |a WATER ANALYSIS 
690 1 0 |a WATER POLLUTION 
690 1 0 |a ALCOHOL 
690 1 0 |a CLUSTER ANALYSIS 
690 1 0 |a ELECTRONIC EQUIPMENT 
690 1 0 |a LABORATORY METHOD 
690 1 0 |a PHENOL 
690 1 0 |a PRINCIPAL COMPONENT ANALYSIS 
690 1 0 |a WATER QUALITY 
690 1 0 |a ARTICLE 
690 1 0 |a CLUSTER ANALYSIS 
690 1 0 |a DILUTION 
690 1 0 |a ELECTRIC CONDUCTIVITY 
690 1 0 |a ELECTRONIC SENSOR 
690 1 0 |a PRINCIPAL COMPONENT ANALYSIS 
690 1 0 |a SIGNAL NOISE RATIO 
690 1 0 |a VAPOR 
690 1 0 |a VAPOR PRESSURE 
690 1 0 |a VOLATILIZATION 
690 1 0 |a ALCOHOLS 
690 1 0 |a CLUSTER ANALYSIS 
690 1 0 |a ELECTRONICS 
690 1 0 |a PHENOL 
690 1 0 |a PRINCIPAL COMPONENT ANALYSIS 
690 1 0 |a WASTE DISPOSAL, FLUID 
690 1 0 |a WATER POLLUTANTS, CHEMICAL 
700 1 |a Cassanello, M. 
700 1 |a Negri, R.M. 
773 0 |d 2006  |g v. 40  |h pp. 6058-6063  |k n. 19  |p Environ. Sci. Technol.  |x 0013936X  |w (AR-BaUEN)CENRE-14  |t Environmental Science and Technology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33749417294&doi=10.1021%2fes052322e&partnerID=40&md5=248715bff2d94d62554c44b9163341fc  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/es052322e  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0013936X_v40_n19_p6058_Diz  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0013936X_v40_n19_p6058_Diz  |y Registro en la Biblioteca Digital 
961 |a paper_0013936X_v40_n19_p6058_Diz  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 67920