Gelation and structural characteristics of incompatible whey proteins/hydroxypropylmethylcellulose mixtures

The influence of hydroxypropylmethycellulose (HPMC) on whey protein (WPC) gelling properties was studied under thermodynamic incompatibility conditions at neutral pH and room temperature. The binodal curve characterizing phase separation was determined. Thermal transitions of mixed systems above the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Pérez, O.E
Otros Autores: Wargon, V., M.R. Pilosof, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11787caa a22009377a 4500
001 PAPER-6965
003 AR-BaUEN
005 20230518203641.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33746255901 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a FOHYE 
100 1 |a Pérez, O.E. 
245 1 0 |a Gelation and structural characteristics of incompatible whey proteins/hydroxypropylmethylcellulose mixtures 
260 |c 2006 
270 1 0 |m M.R. Pilosof, A.; Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, 1428 Buenos Aires, Argentina; email: apilosof@di.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Baeza, R.I., Carp, D.J., Pérez, O.E., Pilosof, A.M.R., κ-Carrageenan-protein interactions: Effect of proteins on polysaccharide gelling and textural properties (2002) Lebensmittel-Wissenschaft und-Technologie, 35, pp. 741-747 
504 |a Baeza, R.I., Pilosof, A.M.R., Mixed biopolymer gel systems of β-lactoglobulin and non-gelling gums (2001) Food colloids, fundamentals of formulation, pp. 392-403. , Dickinson E., and Miller R. (Eds), RSC, Cambridge 
504 |a Baeza, R.I., Pilosof, A.M.R., Calorimetric studies of thermal denaturation of β-lactoglobulin in the presence of polysaccharides (2002) Lebensmittel-Wissenschaft und-Technologie, 35, pp. 393-399 
504 |a Beaulieu, C.M., Turgeon, S.L., Doublier, J.L., Rheology, texture and microstructure of whey proteins/low methoxyl pectins mixed gels with added calcium (2001) International Dairy Journal, 11, pp. 961-967 
504 |a Capron, I., Nicolai, T., Smith, C., Effect of addition of κ-carrageenan on the mechanical and structural properties of β-lactoglobulin gels (1999) Carbohydrates Polymers, 40, pp. 233-238 
504 |a Cayot, P., Lorient, D., Structure-function relationships of whey proteins (1997) Food proteins and their applications, pp. 225-256. , Damodaran S., and Paraf A. (Eds), Marcel Dekker, New York 
504 |a Chevillard, C., Axelos, M.A.V., Phase separation of aqueous solution of methylcellulose (1997) Colloid and Polymer Science, 275, pp. 537-545 
504 |a Dickinson, E., Emulsion stabilization by polysaccharides and protein-polysaccharide complexes (1995) Food polysaccharides and their application, pp. 501-515. , Stephen A.M. (Ed), Marcel Dekker Inc, New York 
504 |a Doublier, J.L., Garnier, C., Renard, D., Sánchez, C., Protein-polysaccharide interactions (2000) Current Opinion in Colloids & Interface Science, 5, pp. 202-214 
504 |a Eleya, M.M.O., Turgeon, S.L., Rheology of κ-carrageenan and β-lactoglobulin mixed gels (2000) Food Hydrocolloids, 14, pp. 29-40 
504 |a Feldstein, M.M., Roos, A., Chevallier, C., Creton, C., Dormidontova, E.E., Relation of glass transition temperature to the hydrogen bonding degree and energy in poly(N-vinyl pyrrolidone) blends with hydroxyl-containing plasticizers: 3. Analysis of two glass transition temperatures featured for PVP solutions in liquid poly(ethylene glycol) (2003) Polymer, 44, pp. 1819-1834 
504 |a Fernandes, P., Viscoelastic characteristics of whey protein systems at neutral pH (1994) Food Hydrocolloids, 8, pp. 277-285 
504 |a Ford, J.L., Thermal analysis of hydroxypropylmethycellulose and methylcellulose: powders, gels and matrix tables (1999) International Journal of Pharmaceutics, 179, pp. 209-228 
504 |a Ford, J.L., Mitchell, K., Thermal analysis of gels and matrix tablets containing cellulose ethers (1995) Thermochimica Acta, 248, pp. 329-345 
504 |a Fyfe, C.A., Blazek, A.I., Investigation of hydrogel formation from hydroxypropylmethylcellulose (HPMC) by NMR spectroscopy and NMR imaging techniques (1997) Macromolecules, 30, pp. 6230-6237 
504 |a Galazka, V.B., Smith, D., Ledward, D.A., Dickinson, E., Interactions of bovine serum albumin with sulphated polysacchaides: Effcts of pH ionic strength and high pressure treatment (1999) Food Chemistry, 64, pp. 303-310 
504 |a Hemar, Y., Tamehana, M., Munro, P.A., Singh, H., Viscosity, microstructure and phase behavior of aqueous mixtures of commercial milk protein products and xanthan gum (2001) Food Hydrocolloids, 15, pp. 565-574 
504 |a Hoffmann, M.A.M., Van Mil, P.J.J.M., Heat-induced aggregation of β-lactoglobulin: As a function of pH (1999) Journal of Agricultural and Food Chemistry, 47, pp. 1898-1905 
504 |a Kato, T., Yokoyama, M., Takahashi, A., Melting temperatures of thermally reversible gels IV. Methyl cellulose-water gels (1978) Colloid and Polymer Science, 266, pp. 15-21 
504 |a Kobayashi, K., Huang, C., Lodge, T.P., Thermorreversible gelation of aqueous methylcellulose solutions (1999) Macromolecules, 32, pp. 7070-7077 
504 |a Lorén, N., Hermansson, A.M., Structure evolution during phase separation and gelation of biopolymer mixtures (2003) Food colloids, biopolymers and materials, pp. 298-308. , Dickinson E., and Van Vliet T. (Eds), RSC, Cambridge 
504 |a Mc Cristal, C.B., Ford, J.L., Rajabi-Siahboomi, A.R., A study on the interaction of water and cellulose ethers using differential scanning calorimetry (1997) Thermochimica Acta, 294, pp. 91-98 
504 |a Mulvihill, D.M., Donovan, M., Whey proteins and their thermal denaturation. A review (1987) Irish Journal of Food Science and Technology, 11, pp. 43-75 
504 |a Norton, I.T., Frith, W.J., Phase separation in mixed biopolymer systems (2003) Food colloids, biopolymers and materials, pp. 282-297. , Dickinson E., and Van Vliet T. (Eds), RSC, Cambridge 
504 |a Puyol, P., Perez, M.D., Horne, D.S., Heat-induced gelation of whey protein isolates (WPI): Effect of NaCl and protein concentration (2001) Food Hydrocolloids, 15, pp. 233-237 
504 |a Relkin, P., Meylheuc, T., Launay, B., Raynal, K., Heat-induced gelation of globular protein mixtures. A DSC and scanning electron microscopic study (1998) Journal of Thermal Analysis, 51, pp. 747-755 
504 |a Sarkar, N., Kinetics of thermal gelation of methylcellulose and hydroxypropylmethycellulose in aqueous solutions (1995) Carbohydrate Polymer, 26, pp. 195-203 
504 |a Sarkar, N., Walker, L.C., Hydration-dehydration properties of methylcellulose and hydroxypropylmethylcellulose (1995) Carbohydrate Polymers, 27, pp. 177-185 
504 |a Schorsch, C., Jones, M.G., Norton, I.T., Thermodynamic incompatibility and microstructure of milk protein/locust bean gum/sucrose systems (1999) Food Hydrocolloids, 13, pp. 89-99 
504 |a Tanaka, F., Phase formation of associating polymers: gelation, phase separation and microphase formation (1996) Advances in Colloid and Interface Science, 63, pp. 23-40 
504 |a Tavares, C., Lopes da Silva, J.A., Rheology of galactomannan-whey protein mixed systems (2003) International Dairy Journal, 13, pp. 699-706 
504 |a Tolstoguzov, V.B., Some physico-chemical aspects of protein processing in foods. Multicomponent gels (1995) Food Hydrocolloids, 9 (4), pp. 317-332 
504 |a Tolstoguzov, V., Some thermodynamic considerations in food formulation (2003) Food Hydrocolloids, 17, pp. 1-23 
504 |a Tritt-Goc, J., Pislewski, N., Magnetic resonance imaging study of the swelling kinetics of hydroxypropylmethylcellulose (HPMC) in water (2002) Journal of Controlled Release, 80, pp. 79-86 
504 |a Turgeon, S.L., Beaulieu, M., Schmitt, C., Sánchez, C., Protein-polysaccharide interactions: phase-ordering kinetics, thermodynamic and structural aspects (2003) Current Opinion in Colloid and Interface Science, 8, pp. 401-414 
504 |a Verheul, M., Pedersen, J.S., Roefs, S.P.F.M., de Kruif, K.G., Association behavior of native β-lactoglobulin (1999) Biopolymers, 49, pp. 11-20 
504 |a Yuguchi, Y., Urakawa, H., Kitamura, S., Ohno, S., Kajiwara, K., Gelation mechanism of methylhydroxypropylcellulose in aqueous solution (1995) Food Hydrocolloids, 9 (3), pp. 173-179 
504 |a Zhang, G., Foegeding, E.A., Heat-induced phase behaviour of β-lactoglobulin/polysaccharide mixtures (2003) Food Hydrocolloids, 17, pp. 785-792 
504 |a Zhuravskaya, N.A., Kiknadze, E.V., Antonov, Y.A., Tolstoguzov, V.B., (1986) Nahrung, 30. , 591-599; 601-613 
520 3 |a The influence of hydroxypropylmethycellulose (HPMC) on whey protein (WPC) gelling properties was studied under thermodynamic incompatibility conditions at neutral pH and room temperature. The binodal curve characterizing phase separation was determined. Thermal transitions of mixed systems above the binodal curve showed two endothermic peaks corroborating phase separation. First of all the gelation process of single HPMC was studied by different techniques in order to interpret the behaviour of mixed systems. Gelation dynamics of mixed systems showed two competitive phenomena during heating, phase separation and gelation. The solid character of mixtures increased when WPC concentration was higher than 8% and the WPC/HPMC ratio was 4 or higher. The gelation temperature, determined by dynamic rheometry, was related to the relative amount of both components. The morphology of mixed gels after the heating/cooling cycle was of the type core-shell, where the core was constituted by HPMC gel. The elastic modulus of mixed gels was much higher than that of single WPC gels at the same concentration, while hardness and relative viscoelasticity were slightly decreased. Core-shell macrostructure results are very interesting because it could find applications in the design of microcapsules or in controlled delivery systems, in which an active component could be partitioned into separated phases or to develop new structures and food products. © 2005 Elsevier Ltd. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: The authors acknowledge the support from Universidad de Buenos Aires, Agencia Nacional de Promoción Científica y Tecnológica and Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina. 
593 |a Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, 1428 Buenos Aires, Argentina 
593 |a Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina 
690 1 0 |a CORE-SHELL GELS 
690 1 0 |a DELIVERY 
690 1 0 |a GELATION 
690 1 0 |a HYDROXYPROPYLMETHYLCELLULOSE 
690 1 0 |a PHASE SEPARATION 
690 1 0 |a WHEY PROTEINS 
700 1 |a Wargon, V. 
700 1 |a M.R. Pilosof, A. 
773 0 |d 2006  |g v. 20  |h pp. 966-974  |k n. 7  |p Food Hydrocolloids  |x 0268005X  |w (AR-BaUEN)CENRE-4766  |t Food Hydrocolloids 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33746255901&doi=10.1016%2fj.foodhyd.2005.11.005&partnerID=40&md5=9685b68824010932361b491b193945ae  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.foodhyd.2005.11.005  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0268005X_v20_n7_p966_Perez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0268005X_v20_n7_p966_Perez  |y Registro en la Biblioteca Digital 
961 |a paper_0268005X_v20_n7_p966_Perez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 67918