Calcium oscillations and waves generated by multiple release mechanisms in pancreatic acinar cells

We explore the dynamic behavior of a model of calcium oscillations and wave propagation in the basal region of pancreatic acinar cells [Sneyd, J., et al., Biophys. J. 85: 1392-1405, 2003]. Since it is known that two principal calcium release pathways are involved, inositol trisphosphate receptors (I...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ventura, A.C
Otros Autores: Sneyd, J.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13172caa a22011657a 4500
001 PAPER-6924
003 AR-BaUEN
005 20230518203639.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33750684344 
024 7 |2 cas  |a Inositol 1,4,5-Trisphosphate Receptors; Ryanodine Receptor Calcium Release Channel 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a BMTBA 
100 1 |a Ventura, A.C. 
245 1 0 |a Calcium oscillations and waves generated by multiple release mechanisms in pancreatic acinar cells 
260 |c 2006 
270 1 0 |m Ventura, A.C.; Departamento de Física, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina; email: alejandra@df.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Albrecht, M.A., Colegrove, S.L., Friel, D.D., Differential regulation of ER calcium uptake and release rates accounts for multiple modes of Ca2+-induced Ca2+ release (2002) J. Gen. Physiol., 119, pp. 211-233 
504 |a Ashby, M.C., Craske, M., Park, M.K., Gerasimenko, O.V., Burgoyne, R.D., Petersen, O.H., Tepikin, A.V., Localized Ca2+ uncaging reveals polarized distribution of Ca2+- sensitive Ca2+ release sites: Mechanism of unidirectional Ca2+ waves (2002) J. Cell Biol., 158, pp. 283-292 
504 |a Camello, P., Gardner, J., Petersen, O.H., Tepikin, A.V., Calcium dependence of calcium extrusion and calcium uptake in mouse pancreatic acinar cells (1996) J. Physiol., 85, pp. 490-593 
504 |a Cancela, J.M., Van Coppenolle, F., Galione, A., Tepikin, A.V., Petersen, O.H., Transformation of local Ca2+ spikes to global Ca2+ transients: The combinatorial roles of multiple Ca2+ releasing messengers (2002) EMBO J., 21, pp. 909-919 
504 |a Doedel, E., (1986) Software for Continuation and Bifurcation Problems in Ordinary Differential Equations, , California Institute of Technology, California 
504 |a Dupont, G., Koukoui, O., Clair, C., Erneux, C., Swillens, S., Combettes, L., Ca2+ oscillations in hepatocytes do not require the modulation of InsP3-kinase activity by Ca2+ (2003) FEBS Lett., 534 (1-3), pp. 101-105 
504 |a Ermentrout, B., (2002) Simulating, Analyzing and Animating Dynamical Systems, , http://www.math.pitt.edu/bard/xpp/xpp.html, SIAM, Philadelphia, PA 
504 |a Favre, C.J., Jacquet, J., Lew, D.P., Krause, K.H., Highly supralinear feedback inhibition of Ca2+ uptake by the Ca2+ load of intracellular stores (1996) J. Biol. Chem., 271, pp. 14925-14930 
504 |a Fogarty, K.E., Kidd, J.F., Tuft, D.A., Thorn, P., Mechanisms underlying InsP3-evoked global Ca2+ signals in mouse pancreatic acinar cells (2000) J. Physiol., 526, pp. 515-526 
504 |a Galione, A., McDougall, A., Busa, W.B., Willmott, N., Gillot, I., Whitaker, M., Redundant mechanisms of calcium-induced calcium release underlying calcium waves during fertilization of sea urchin eggs (1993) Science, 261 (5119), pp. 348-352 
504 |a Gin, E., Kirk, V., Sneyd, J., A bifurcation analysis of calcium buffering (2006) Bulletin of Mathematical Biology, , in press 
504 |a Giovannucci, D.R., Bruce, J.I., Straub, S.V., Arreola, J., Sneyd, J., Shuttleworth, T.J., Yule, D.I., Cytosolic Ca2+ and Ca2+-activated Cl- current dynamics: Insights from two functionally distinct mouse exocrine cells (2002) J. Physiol., 540, pp. 469-484 
504 |a Goldbeter, A., Computational approaches to cellular rhythms (2002) Nature, 420, pp. 238-245 
504 |a Kasai, H., Pancreatic calcium waves and secretion (1995) Ciba Found. Symp., 188, pp. 104-116 
504 |a Kasai, H., Li, Y.-X., Miyashita, Y., Subcellular distribution of Ca2+ release channels underlying Ca2+ waves and oscillations in exocrine pancreas (1993) Cell, 74, pp. 669-677 
504 |a Keener, J.P., Sneyd, J., (1998) Mathematical Physiology, , Springer-Verlag, New York 
504 |a Keizer, J., Levine, L., Ryanodine receptor adaptation and Ca2+-induced Ca2+ release-dependent Ca2+ oscillations (1996) Biophys. J., 71, pp. 3477-3487 
504 |a LeBeau, A.P., Yule, D.I., Groblewski, G.E., Sneyd, J., Agonist-dependent phosphorylation of the inositol 1,4,5-trisphosphate receptor: A possible mechanism for agonist-specific calcium oscillations in pancreatic acinar cells (1999) J. Gen. Physiol., 113, pp. 851-872 
504 |a Leite, M.F., Burgstahler, A.D., Nathanson, M.H., Ca2+ waves require sequential activation on inositol trisphosphate receptors and ryanodine receptors in pancreatic acini (2002) Gastroenterology, 122, pp. 415-427 
504 |a MacLennan, D.H., Rice, W.J., Green, N.M., The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases (1997) J. Biol. Chem., 272, pp. 28815-28818 
504 |a Mogami, H., Tepikin, A.V., Petersen, O.H., Termination of cytosolic Ca2+ signals: Ca2+ reuptake into intracellular stores is regulated by the free Ca2+ concentration in the store lumen (1998) EMBO J., 17, pp. 435-442 
504 |a Murray, J.D., (1989) Mathematical Biology, , Springer-Verlag, Berlin 
504 |a Nash, M.S., Kenneth, W.Y., Challiss, R.A.J., Nahorski, S.R., Receptor-specific messenger oscillations (2001) Nature, 413, pp. 381-382 
504 |a Nathanson, M.H., Padfield, P.J., O'Sullivan, A.J., Burgstahler, A.D., Jamieson, J.D., Mechanism of Ca2+ wave propagation in pancreatic acinar cells (1992) J. Biol. Chem., 267, pp. 18118-18121 
504 |a Petersen, O.H., Calcium signal compartmentalization (2002) Biol. Res., 35, pp. 177-182 
504 |a Petersen, O.H., Local calcium spiking in pancreatic acinar cells (1995) Ciba Found. Symp., 188, pp. 85-103 
504 |a Petersen, O.H., Burdakov, D., Tepikin, A.V., Polarity in intracellular calcium signaling (1999) Bioessays, 21, pp. 851-860 
504 |a Schuster, S., Marhl, M., Hofer, T., Modelling of simple and complex calcium jamesdufouroscillations. From single-cell responses to intercellular signalling (2002) Eur. J. Biochem., 269, pp. 1333-1355 
504 |a Shuttleworth, T.J., What drives calcium entry during [Ca2+]i oscillations? Challenging the capacitative model (1999) Cell Calcium, 25, pp. 237-246 
504 |a Simpson, D., Kirk, V., Sneyd, J., Complex oscillations and waves of calcium in pancreatic acinar cells (2005) Physica D, 200 (3-4), pp. 303-324 
504 |a Sneyd, J., Girard, S., Clapham, D., Calcium wave propagation by calcium-induced calcium release: An unusual excitable system (1993) Bull. Math. Biol., 55, pp. 315-344 
504 |a Sneyd, J., Tsaneva-Atanasova, K., Yule, D.I., Thompson, J.L., Shuttleworth, T.J., Control of calcium oscillations by membrane fluxes (2004) Proc. Natl. Acad. Sci. USA, 101 (5), pp. 1392-1396 
504 |a Sneyd, J., Tsaneva-Atanasova, K., Bruce, J.I.E., Straub, S.V., Giovannucci, D.R., Yule, D.I., A Model of Calcium Waves in Pancreatic and Parotid Acinar Cells (2003) Biophys. J., 85, pp. 1392-1405 
504 |a Sneyd, J., Dufour, J.F., A dynamic model of the type-2 inositol trisphosphate receptor (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 2398-2403 
504 |a Straub, S.V., Giovannucci, D.R., Yule, D.I., Calcium wave propagation in pancreatic acinar cells: Functional interaction of inositol 1,4,5-trisphosphate receptors, ryanodine receptors, and mitochondria (2000) J. Gen. Physiol., 116, pp. 547-560 
504 |a Thorn, P., Spatial domains of Ca2+ signalling in secretory epithelial cells (1996) Cell Calcium, 20, pp. 203-214 
504 |a Thorn, P., Spatial aspects of Ca2+ signalling in pancreatic acinar cells (1993) J. Exp. Biol., 184, pp. 129-144 
504 |a Thorn, P., Lawrie, A.M., Smith, P.M., Gallacher, D.V., Petersen, O.H., Ca2+ oscillations in pancreatic acinar cells: Spatiotemporal relationships and functional implications (1993) Cell Calcium, 14, pp. 746-757 
504 |a Thorn, P., Lawrie, A.M., Smith, P.M., Gallacher, D.V., Petersen, O.H., Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate (1993) Cell, 74, pp. 661-668 
504 |a Tsaneva-Atanasova, K., Shuttleworth, T.J., Yule, D.I., Thompson, J.L., Sneyd, J., Calcium oscillations and membrane transport: The importance of two time scales (2004) SIAM J. Multiscale Model. Simul., 3, pp. 245-264 
504 |a Wakui, M., Potter, B.V.L., Petersen, O.H., Pulsatile intracellular calcium release does not depend on fluctuations in inositol trisphosphate concentration (1989) Nature, 62, pp. 339-358 
504 |a Xu, X., Zeng, W., Diaz, J., Muallem, S., Spatial compartmentalization of Ca2+ signaling complexes in pancreatic acini (1996) J. Biol. Chem., 271, pp. 24684-24690 
504 |a Yano, K., Petersen, O.H., Tepikin, A.V., Dual sensitivity of sarco-plasmic/endo-plasmic Ca2+-ATPase to cytosolic and endoplasmic reticulum Ca2+ as a mechanism of modulating cytosolic Ca2+ oscillations (2004) Biochem J., 383, pp. 353-356 
504 |a Yule, D.I., Stuenkel, E., Williams, J.A., Intercellular calcium waves in rat pancreatic acini: Mechanism of transmission (1996) Am. J. Physiol., 271, pp. C1285-C1294 
504 |a Yule, D.I., Lawrie, A.M., Gallacher, D.V., Acetylcholine and cholecystokinin induce different patterns of oscillating calcium signals in pancreatic acinar cells (1991) Cell Calcium., 12, pp. 145-151 
520 3 |a We explore the dynamic behavior of a model of calcium oscillations and wave propagation in the basal region of pancreatic acinar cells [Sneyd, J., et al., Biophys. J. 85: 1392-1405, 2003]. Since it is known that two principal calcium release pathways are involved, inositol trisphosphate receptors (IPR) and ryanodine receptors (RyR), we study how the model behavior depends on the density of each receptor type. Calcium oscillations can be mediated either by IPR or RyR. Continuous increases in either RyR or IPR density can lead to the appearance and disappearance of oscillations multiple times, and the two receptor types interact via their common effect on cytoplasmic calcium concentration and the subsequent effect on the total amount of calcium inside the cell. Increases in agonist concentration can stimulate oscillations via the RyR by increasing calcium influx. Using a two time-scale approach, we explain these complex behaviors by treating the total amount of cellular calcium as a slow parameter. Oscillations are controlled by the shape of the slow manifold and where it intersects the nullcline of the slow variable. When calcium diffusion is included, the existence of traveling waves in the model equation is strongly dependent on the interplay between the total amount of calcium in the cell and membrane transport, a feature that can be experimentally tested. Our results help us understand the behavior of a model that includes both receptors in comparison to the properties of each receptor type in isolation. © 2006 Springer Science+Business Media, Inc.  |l eng 
536 |a Detalles de la financiación: U.S. Department of Energy, W-7405-ENG-36 
536 |a Detalles de la financiación: 1R01GM65830-01 
536 |a Detalles de la financiación: Fundación Antorchas 
536 |a Detalles de la financiación: Royal Society of New Zealand 
536 |a Detalles de la financiación: J.S. was supported by the Marsden Fund of the Royal Society of New Zealand. A.V. was supported by Fundación Antorchas and N.I.H. grant 1R01GM65830-01 and by the Department of Energy (USA), under contract W-7405-ENG-36. 
593 |a Departamento de Física, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Department of Mathematics, University of Auckland, Auckland, New Zealand 
690 1 0 |a CALCIUM OSCILLATIONS 
690 1 0 |a CALCIUM WAVES 
690 1 0 |a PANCREATIC ACINAR CELLS 
690 1 0 |a TRAVELING WAVES 
690 1 0 |a INOSITOL 1,4,5 TRISPHOSPHATE RECEPTOR 
690 1 0 |a RYANODINE RECEPTOR 
690 1 0 |a ARTICLE 
690 1 0 |a BIOLOGICAL MODEL 
690 1 0 |a CALCIUM SIGNALING 
690 1 0 |a COMPARATIVE STUDY 
690 1 0 |a HUMAN 
690 1 0 |a METABOLISM 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a CALCIUM SIGNALING 
690 1 0 |a HUMANS 
690 1 0 |a INOSITOL 1,4,5-TRISPHOSPHATE RECEPTORS 
690 1 0 |a MODELS, BIOLOGICAL 
690 1 0 |a RYANODINE RECEPTOR CALCIUM RELEASE CHANNEL 
650 1 7 |2 spines  |a PANCREAS 
650 1 7 |2 spines  |a PANCREAS 
700 1 |a Sneyd, J. 
773 0 |d 2006  |g v. 68  |h pp. 2205-2231  |k n. 8  |p Bull. Math. Biol.  |x 00928240  |w (AR-BaUEN)CENRE-4073  |t Bulletin of Mathematical Biology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750684344&doi=10.1007%2fs11538-006-9101-0&partnerID=40&md5=955697e0e6d03c3dc0a5867e90508ee7  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11538-006-9101-0  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00928240_v68_n8_p2205_Ventura  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00928240_v68_n8_p2205_Ventura  |y Registro en la Biblioteca Digital 
961 |a paper_00928240_v68_n8_p2205_Ventura  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 67877