A stochastic population dynamics model for Aedes aegypti: Formulation and application to a city with temperate climate

Aedes aegypti is the main vector for dengue and urban yellow fever. It is extended around the world not only in the tropical regions but also beyond them, reaching temperate climates. Because of its importance as a vector of deadly diseases, the significance of its distribution in urban areas and th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Otero, M.
Otros Autores: Solari, H.G, Schweigmann, N.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13429caa a22013817a 4500
001 PAPER-6920
003 AR-BaUEN
005 20230518203638.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33750709284 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a BMTBA 
100 1 |a Otero, M. 
245 1 2 |a A stochastic population dynamics model for Aedes aegypti: Formulation and application to a city with temperate climate 
260 |c 2006 
270 1 0 |m Solari, H.G.; Department of Physics, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; email: solari@df.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Andersson, H., Britton, T., Stochastic epidemic models and their statistical analysis (2000) Lecture Notes in Statistics, 151. , Springer-Verlag, Berlin 
504 |a Aparicio, J.P., Solari, H.G., Population dynamics: A poissonian approximation and its relation to the langevin process (2001) Phys. Rev. Lett., 86, pp. 4183-4186 
504 |a Arrivillaga, J., Barrera, R., Food as a limiting factor for aedes aegypti in water-storage containers (2004) J. Vector Ecol., 29, pp. 11-20 
504 |a Bar-Zeev, M., The effect of density on the larvae of a mosquito and its influence on fecundity (1957) Bull. Res. Council Israel, 6 B, pp. 220-228 
504 |a Bar-Zeev, M., The effect of temperature on the growth rate and survival of the immature stages of aedes aegypti (1958) Bull. Entomol. Res., 49, pp. 157-163 
504 |a Campos, R.E., Macia, A., Observaciones biologicas de una poblacion natural de aedes aegypti (diptera: Culicidae) en la provincia de buenos aires, argentina (1996) Rev. Soc. Entomol. Argent., 55 (1-4), pp. 67-72 
504 |a Carbajo, A.E., Schweigmann, N., Curto, S.I., De Garín, A., Bejarán, R., Dengue transmission risk maps of argentina (2001) Trop. Med. Int. Health, 6 (3), pp. 170-183 
504 |a Carter, H.R., (1931) Yellow Fever: An Epidemiological and Historical Study of Its Place of Origin, , The Williams & Wilkins Company, Baltimore 
504 |a Christophers, R., (1960) Aedes aegypti (L.), the Yellow Fever Mosquito, , Cambridge Univ. Press., Cambridge 
504 |a De Garín, A.B., Bejarán, R.A., Carbajo, A.E., De Casas, S.C., Schweigmann, N.J., Atmospheric control of aedes aegypti populations in buenos aires (argentina) and its variability (2000) Int. J. Biometerol., 44, pp. 148-156 
504 |a Depinay, J.-M.O., Mbogo, C.M., Killeen, G., Knols, B., Beier, J., Carlson, J., Dushoff, J., McKenzie, F.E., A simulation model of african anopheles ecology and population dynamics for the analysis of malaria transmision (2004) Malaria J., 3 (29), pp. 1-21 
504 |a Domínguez, C., Almeida, F.F.L., Almirón, W., Dinámica poblacional de aedes aegypti (diptera: Culicidae) en córdoba capital (2000) Revista de la Sociedad Entomológica de Argentina, 59, pp. 41-50 
504 |a Dye, C., Intraspecific competition amongst larval aedes aegypti: Food exploitation or chemical interference (1982) Ecol. Entomol., 7, pp. 39-46 
504 |a Ethier, S.N., Kurtz, T.G., (1986) Markov Processes, , John Wiley and Sons, New York 
504 |a Fay, R.W., The biology and bionomics of aedes aegypti in the laboratory (1964) Mosq. News., 24, pp. 300-308 
504 |a Focks, D.A., Haile, D.C., Daniels, E., Moun, G.A., Dynamics life table model for aedes aegypti: Analysis of the literature and model development (1993) J. Med. Entomol., 30, pp. 1003-1018 
504 |a Focks, D.A., Haile, D.C., Daniels, E., Mount, G.A., Dynamic life table model for aedes aegypti: Simulations results (1993) J. Med. Entomol., 30, pp. 1019-1029 
504 |a Dengue enfermedad emergente (1998) Fundación de Estudios Infectológicos, 1 (1), pp. 1-6. , http://www.funcei.org.ar 
504 |a Dengue enfermedad emergente (1999) Fundación de Estudios Infectológicos, 2 (2), pp. 1-8. , http://www.funcei.org.ar 
504 |a Dengue enfermedad emergente (1999) Fundación de Estudios Infectológicos, 2 (1), pp. 1-12. , http://www.funcei.org.ar 
504 |a Gleiser, R.M., Urrutia, J., Gorla, D.E., Effects of crowding on populations of aedes albifasciatus larvae under laboratory conditions (2000) Entomologia Experimentalis et Applicata, 95, pp. 135-140 
504 |a Hill, G.W., On the part of motion of the lunar perigee which is function of the mean motions of the sun and moon (1877) Acta Math., 8, p. 1 
504 |a Horsfall, W.R., (1955) Mosquitoes: Their Bionomics and Relation to Disease, , Ronald, New York, USA 
504 |a Király, A., Jánosi, I.M., Stochastic modelling of daily temperature fluctuations (2002) Phys. Rev. E, 65, p. 051102 
504 |a Kurtz, T.G., Solutions of ordinary differential equations as limits of pure jump markov processes (1970) J. Appl. Prob., 7, pp. 49-58 
504 |a Kurtz, T.G., Limit theorems for sequences of jump processes approximating ordinary differential equations (1971) J. Appl. Prob., 8, pp. 344-356 
504 |a Legates, D.R., Willmott, C.J., Mean seasonal and spatial variability in global surface air temperature (1990) Theor. Appl. Climatology, 41, pp. 11-21 
504 |a Livdahl, T.P., Koenekoop, R.K., Futterweit, S.G., The complex hatching response of aedes eggs to larval density (1984) Ecol. Entomol., 9, pp. 437-442 
504 |a (1964) Campaña de Erradicacion del Aedes Aegypti en la Repblica Argentina, , Ministerio de Asistencia Social y Salud Publica, A., Informe final. Buenos Aires 
504 |a Morales, M.A., Monteros, M., Fabbri, C.M., Garay, M.E., Introini, V., Ubeid, M.C., Baroni, P.G., Enria, D.A., Riesgo de aparicin de dengue hemorrágico en la argentina (2004) II Congreso Internacional Dengue Y Fiebre Amarilla, , http://www.cidfa2004.sld.cu, La Habana, Cuba 
504 |a Nayar, J.K., Sauerman, D.M., The effects of nutrition on survival and fecundity in florida mosquitoes. Part 3. Utilization of bood and sugar for fecundity (1975) J. Med. Entomol., 12, pp. 220-225 
504 |a Perillo, G.M.E., Piccolo, M.C., Qué es el estuario de bahía blanca? (2004) Ciencia Hoy, 14 (81), pp. 8-15. , http://www.ciencia-hoy.retina.ar, on line at 
504 |a Powell, J.A., Jenkis, J.L., Seasonal temperature alone can synchronize life cycles (2000) Bull. Math. Biol., 62, pp. 977-998 
504 |a Rueda, L.M., Patel, K.J., Axtell, R.C., Stinner, R.E., Temperature-dependent development and survival rates of culex quinquefasciatus and aedes aegypti (diptera: Culicidae) (1990) J. Med. Entomol., 27, pp. 892-898 
504 |a Schoofield, R.M., Sharpe, P.J.H., Magnuson, C.E., Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory (1981) J. Theor. Biol., 88, pp. 719-731 
504 |a Schuster, H.G., (1984) Deterministic Chaos, , Physik Verlag, Weinheim 
504 |a Schweigmann, N., Boffi, R., Aedes aegypti y aedes albopictus: Situación entomológica en la región (1998) Temas de Zoonosis Y Enfermedades Emergentes, Segundo Cong. Argent. de Zoonosis Y Primer Cong. Argent. Y Lationoamer. de Enf. Emerg. Y Asociación Argentina de Zoonosis, pp. 259-263. , Buenos Aires 
504 |a Sharpe, P.J.H., DeMichele, D.W., Reaction kinetics of poikilotherm development (1977) J. Theor. Biol., 64, pp. 649-670 
504 |a Solari, H., Natiello, M., Mindlin, B., (1996) Nonlinear Dynamics: A Two-way Trip from Physics to Math, , Institute of Physics, Bristol 
504 |a Solari, H., Natiello, M., Poisson approximation to density dependent stochastic processes: A numerical implementation and test (2003) Proceedings of the Workshop Dynamical Systems from Number Theory to Probability-2, 6, pp. 79-94. , Khrennikov, A. (Ed.), Mathematical Modelling in Physics, Engineering and Cognitive Sciences. Växjö University Press, Växjö 
504 |a Solari, H.G., Natiello, M.A., Stochastic population dynamics: The poisson approximation (2003) Phys. Rev. E, 67, p. 031918 
504 |a Southwood, T.R.E., Murdie, G., Yasuno, M., Tonn, R.J., Reader, P.M., Studies on the life budget of aedes aegypti in wat samphaya bangkok thailand (1972) Bull. W.H.O., 46, pp. 211-226 
504 |a Subra, R., Mouchet, J., The regulation of preimaginal populations of aedes aegypti (l.) (diptera: Culicidae) on the kenya coast. ii. Food as a main regulatory factor (1984) Ann. Trop. Med. Parasitol., 78, pp. 63-70 
504 |a Trpis, M., Dry season survival of aedes aegypti eggs in various breeding sites in the dar salaam area, tanzania (1972) Bull. WHO, 47, pp. 433-437 
504 |a Vezzani, C., Velázquez, S.T., Schweigmann, N., Seasonal pattern of abundance of aedes aegypti (diptera: Culicidae) in buenos aires city, argentina (2004) Memor Inst Oswaldo Cruz, 99, pp. 351-356 
504 |a (1998) Dengue Hemorrhagic Fever. Diagnosis, Treatment, Prevention and Control, , WHO, World Health Organization, Ginebra, Suiza 
504 |a Wiggins, S., Global Bifurcations and Chaos. No. 73 (1988) Applied Mathematical Science 
504 |a Wiggins, S., (1990) Introduction to Applied Nonlinear Dynamical Systems and Chaos, , Springer, New York 
520 3 |a Aedes aegypti is the main vector for dengue and urban yellow fever. It is extended around the world not only in the tropical regions but also beyond them, reaching temperate climates. Because of its importance as a vector of deadly diseases, the significance of its distribution in urban areas and the possibility of breeding in laboratory facilities, Aedes aegypti is one of the best-known mosquitoes. In this work the biology of Aedes aegypti is incorporated into the framework of a stochastic population dynamics model able to handle seasonal and total extinction as well as endemic situations. The model incorporates explicitly the dependence with temperature. The ecological parameters of the model are tuned to the present populations of Aedes aegypti in Buenos Aires city, which is at the border of the present day geographical distribution in South America. Temperature thresholds for the mosquito survival are computed as a function of average yearly temperature and seasonal variation as well as breeding site availability. The stochastic analysis suggests that the southern limit of Aedes aegypti distribution in South America is close to the 15°C average yearly isotherm, which accounts for the historical and current distribution better than the traditional criterion of the winter (July) 10°C isotherm. © 2006 Springer Science+Business Media, Inc.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, X308 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICTR 87/2002 
536 |a Detalles de la financiación: The authors thank Daniel Barrera and Pablo Orellano for providing important information. We thank Mario Natiello and Joan Aron for carefully reading the manuscript. The authors acknowledge support by the University of Buenos Aires under grant X308 and by the Agencia Nacional de Promocin Científ ica y Tec-nológica (Argentina) under grant PICTR 87/2002. 
593 |a Department of Physics, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Department of Genetics and Ecology, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a AEDES AEGYPTI 
690 1 0 |a MATHEMATICAL ECOLOGY 
690 1 0 |a POPULATION DYNAMICS 
690 1 0 |a STOCHASTIC MODEL 
690 1 0 |a TEMPERATE CLIMATE 
690 1 0 |a AEDES 
690 1 0 |a ANIMAL 
690 1 0 |a ARTICLE 
690 1 0 |a BIOLOGICAL MODEL 
690 1 0 |a DENGUE 
690 1 0 |a DENGUE VIRUS 
690 1 0 |a DISEASE CARRIER 
690 1 0 |a DISEASE TRANSMISSION 
690 1 0 |a FEMALE 
690 1 0 |a GROWTH, DEVELOPMENT AND AGING 
690 1 0 |a MICROBIOLOGY 
690 1 0 |a POPULATION DYNAMICS 
690 1 0 |a SEASON 
690 1 0 |a STATISTICAL MODEL 
690 1 0 |a STATISTICS 
690 1 0 |a URBAN POPULATION 
690 1 0 |a VIROLOGY 
690 1 0 |a AEDES 
690 1 0 |a ANIMALS 
690 1 0 |a DENGUE 
690 1 0 |a DENGUE VIRUS 
690 1 0 |a FEMALE 
690 1 0 |a INSECT VECTORS 
690 1 0 |a MODELS, BIOLOGICAL 
690 1 0 |a MODELS, STATISTICAL 
690 1 0 |a POPULATION DYNAMICS 
690 1 0 |a SEASONS 
690 1 0 |a STOCHASTIC PROCESSES 
690 1 0 |a URBAN POPULATION 
690 1 0 |a AEDES AEGYPTI 
651 4 |a ARGENTINA 
651 4 |a ARGENTINA 
700 1 |a Solari, H.G. 
700 1 |a Schweigmann, N. 
773 0 |d 2006  |g v. 68  |h pp. 1945-1974  |k n. 8  |p Bull. Math. Biol.  |x 00928240  |w (AR-BaUEN)CENRE-4073  |t Bulletin of Mathematical Biology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750709284&doi=10.1007%2fs11538-006-9067-y&partnerID=40&md5=359ad60d84a1c4577c9588751edb352a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11538-006-9067-y  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00928240_v68_n8_p1945_Otero  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00928240_v68_n8_p1945_Otero  |y Registro en la Biblioteca Digital 
961 |a paper_00928240_v68_n8_p1945_Otero  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 67873