Natural tensor-fields of type (0, 2) on the tangent and cotangent bundles of a Fedosov manifold

To any (0,2)-tensor field on the tangent and cotangent bundles of a Fedosov manifold, we associate a global matrix function 'mutatis mutandis' as in the semi-Riemannian case. Based on this fact, natural (0,2)-tensor fields on these bundles are defined and characterized. © Balkan Society of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Araujo, J.
Otros Autores: Keilhauer, G.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 02865caa a22003737a 4500
001 PAPER-6877
003 AR-BaUEN
005 20230518203635.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33751179676 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Araujo, J. 
245 1 0 |a Natural tensor-fields of type (0, 2) on the tangent and cotangent bundles of a Fedosov manifold 
260 |c 2006 
270 1 0 |m Araujo, J.; Departamento de Matemática, Facultad de Ciencias Exactas, UNICEN, (7000) Tandil - Buenos Aires, Argentina; email: araujo@exa.unicen.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Araujo, J., Keilhauer, G.G.R., Natural tensor fields of type (0,2) on the tangent and cotangent bundles of a semi-Riemannian manifold (2002) Mathematica, 39, pp. 7-16. , Acta Univ. Palacki. Olomuc., Fac. Her. Nat 
504 |a Bryant, R.L., An introduction to lie groups and symplectic geometry (1995) IAS / Park City Mathematics Series, 1, pp. 7-181. , Geometry and Quantum Field Theory (D.S. Freed and K.Uhlenbeck, Ens.), Am. Math. Society, Institute for Advanced Study, Providence 
504 |a Gelfand, I., Retakh, V., Shubin, M., Fedosov manifolds (1998) Advances in Mathematics, 136, pp. 104-140 
504 |a Weyl, H., (1997) The Classical Groups, Their Invariance and Representations, , Princeton Landmarks in Mathematics 
520 3 |a To any (0,2)-tensor field on the tangent and cotangent bundles of a Fedosov manifold, we associate a global matrix function 'mutatis mutandis' as in the semi-Riemannian case. Based on this fact, natural (0,2)-tensor fields on these bundles are defined and characterized. © Balkan Society of Geometers, Geometry Balkan Press 2006.  |l eng 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas, UNICEN, (7000) Tandil - Buenos Aires, Argentina 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina 
690 1 0 |a CONNECTION MAP 
690 1 0 |a TANGENT BUNDLE 
690 1 0 |a TENSOR FIELD 
700 1 |a Keilhauer, G. 
773 0 |d 2006  |g v. 11  |h pp. 11-19  |k n. 2  |p Balkan J. Geom. Applic.  |x 12242780  |w (AR-BaUEN)CENRE-8796  |t Balkan Journal of Geometry and its Applications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33751179676&partnerID=40&md5=41cfeb0d492fa92d410d4a7b3c9156bd  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_12242780_v11_n2_p11_Araujo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_12242780_v11_n2_p11_Araujo  |y Registro en la Biblioteca Digital 
961 |a paper_12242780_v11_n2_p11_Araujo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 67830