Natural tensor-fields of type (0, 2) on the tangent and cotangent bundles of a Fedosov manifold
To any (0,2)-tensor field on the tangent and cotangent bundles of a Fedosov manifold, we associate a global matrix function 'mutatis mutandis' as in the semi-Riemannian case. Based on this fact, natural (0,2)-tensor fields on these bundles are defined and characterized. © Balkan Society of...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2006
|
| Acceso en línea: | Registro en Scopus Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 02865caa a22003737a 4500 | ||
|---|---|---|---|
| 001 | PAPER-6877 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518203635.0 | ||
| 008 | 190411s2006 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-33751179676 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Araujo, J. | |
| 245 | 1 | 0 | |a Natural tensor-fields of type (0, 2) on the tangent and cotangent bundles of a Fedosov manifold |
| 260 | |c 2006 | ||
| 270 | 1 | 0 | |m Araujo, J.; Departamento de Matemática, Facultad de Ciencias Exactas, UNICEN, (7000) Tandil - Buenos Aires, Argentina; email: araujo@exa.unicen.edu.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Araujo, J., Keilhauer, G.G.R., Natural tensor fields of type (0,2) on the tangent and cotangent bundles of a semi-Riemannian manifold (2002) Mathematica, 39, pp. 7-16. , Acta Univ. Palacki. Olomuc., Fac. Her. Nat | ||
| 504 | |a Bryant, R.L., An introduction to lie groups and symplectic geometry (1995) IAS / Park City Mathematics Series, 1, pp. 7-181. , Geometry and Quantum Field Theory (D.S. Freed and K.Uhlenbeck, Ens.), Am. Math. Society, Institute for Advanced Study, Providence | ||
| 504 | |a Gelfand, I., Retakh, V., Shubin, M., Fedosov manifolds (1998) Advances in Mathematics, 136, pp. 104-140 | ||
| 504 | |a Weyl, H., (1997) The Classical Groups, Their Invariance and Representations, , Princeton Landmarks in Mathematics | ||
| 520 | 3 | |a To any (0,2)-tensor field on the tangent and cotangent bundles of a Fedosov manifold, we associate a global matrix function 'mutatis mutandis' as in the semi-Riemannian case. Based on this fact, natural (0,2)-tensor fields on these bundles are defined and characterized. © Balkan Society of Geometers, Geometry Balkan Press 2006. |l eng | |
| 593 | |a Departamento de Matemática, Facultad de Ciencias Exactas, UNICEN, (7000) Tandil - Buenos Aires, Argentina | ||
| 593 | |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina | ||
| 690 | 1 | 0 | |a CONNECTION MAP |
| 690 | 1 | 0 | |a TANGENT BUNDLE |
| 690 | 1 | 0 | |a TENSOR FIELD |
| 700 | 1 | |a Keilhauer, G. | |
| 773 | 0 | |d 2006 |g v. 11 |h pp. 11-19 |k n. 2 |p Balkan J. Geom. Applic. |x 12242780 |w (AR-BaUEN)CENRE-8796 |t Balkan Journal of Geometry and its Applications | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33751179676&partnerID=40&md5=41cfeb0d492fa92d410d4a7b3c9156bd |y Registro en Scopus |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_12242780_v11_n2_p11_Araujo |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_12242780_v11_n2_p11_Araujo |y Registro en la Biblioteca Digital |
| 961 | |a paper_12242780_v11_n2_p11_Araujo |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 67830 | ||