Randomness and halting probabilities

We consider the question of randomness of the probability ΩU[X] that an optimal Turing machine U halts and outputs a string in a fixed set X. The main results are as follows: ΩU[X] is random whenever X is Σn0-complete or Πn0-complete for some n ≥ 2. However, for n ≥ 2, ΩU[X] is not n-random when X i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Becher, V.
Otros Autores: Figueira, S., Grigorieff, S., Miller, J.S
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04555caa a22004937a 4500
001 PAPER-6871
003 AR-BaUEN
005 20230518203635.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33845530817 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Becher, V. 
245 1 0 |a Randomness and halting probabilities 
260 |c 2006 
270 1 0 |m Becher, V.; Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresArgentina; email: vbecher@dc.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Becher, V., Grigorieff, S., (2005) Random Reals and Possibly Infinite Computations. Part I: Randomness in ∅′, 70 (3), pp. 891-913. , this JOURNAL 
504 |a Random Reals and Possibly Infinite Computations. Part II: From Index Sets to Higher Order Randomness, , In preparation 
504 |a Calude, C., Hertling, P., Khoussainov, B., Wang, Y., Recursively enumerable reals and Chaitin Omega numbers (2001) Theoretical Computer Science, 255 (1-2), pp. 125-149 
504 |a Chaitin, G.J., A theory of program size formally identical to information theory (1975) Journal of the ACM, 22, pp. 329-340 
504 |a (1988) Algorithmic Information Theory, , Cambridge University Press 
504 |a Downey, R., Hirschfeldt, D., Algorithmic Randomness and Complexity, , to appear 
504 |a Downey, R., Hirschfeldt, D., Nies, A., Randomness, computability and density (2002) SIAM Journal on Computing, 31, pp. 1169-1183 
504 |a Figueira, S., Stephan, F., Wu, G., Randomness and universal machines (2005) CCA 2005, Second International Conference on Computability and Complexity in Analysis, Kyoto, Fernuniversität Hagen, Informatik Berichte, 326, pp. 103-116 
504 |a Kučera, A., Slaman, T.A., Randomness and recursive enumerability (2001) SIAM Journal on Computing, 31, pp. 199-211 
504 |a Odifreddi, P., (1990) Classical Recursion Theory, , North-Holland 
504 |a Rogers Jr., H., (1968) Theory of Recursive Functions and Effective Computability, , McGraw Hill, New York 
504 |a Solovay, R.M., (1974) Draft of Paper (Or Series of Papers) on Chaitin's Work, Done for the Most Part during the Period of Sept.-Dec., , unpublished manuscript, IBM Thomas Watson Research Center, Yorktown Heights, NY, 215 pages 
520 3 |a We consider the question of randomness of the probability ΩU[X] that an optimal Turing machine U halts and outputs a string in a fixed set X. The main results are as follows: ΩU[X] is random whenever X is Σn0-complete or Πn0-complete for some n ≥ 2. However, for n ≥ 2, ΩU[X] is not n-random when X is Σn0 or Πn0. Nevertheless, there exists Δn+10 sets such that ΩU[X] is n-random. There are Δ20 sets X such that ΩU[X] is rational. Also, for every n ≥ 1, there exists a set X which is Δn+10 and Σn 0-hard such that ΩU[X] is not random. We also look at the range of ΩU as an operator. We prove that the set {ΩU[X]: X ⊆ 2<ω} is a finite union of closed intervals. It follows that for any optimal machine U and any sufficiently small real r, there is a set X ⊆ 2<ω recursive in ∅′ ⊕ r, such that ΩU[X] = r. The same questions are also considered in the context of infinite computations, and lead to similar results. © 2006, Association for Symbolic Logic.  |l eng 
593 |a Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
593 |a CONICET, Argentina 
593 |a LIAFA, Université Paris 7, CNRS, France 
593 |a Department of Mathematics, University of Connecticut, United States 
700 1 |a Figueira, S. 
700 1 |a Grigorieff, S. 
700 1 |a Miller, J.S. 
773 0 |d 2006  |g v. 71  |h pp. 1411-1430  |k n. 4  |p J. Symb. Logic  |x 00224812  |w (AR-BaUEN)CENRE-249  |t Journal of Symbolic Logic 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33845530817&doi=10.2178%2fjsl%2f1164060463&partnerID=40&md5=98090d037d640796c3c48c7bda34898a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.2178/jsl/1164060463  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00224812_v71_n4_p1411_Becher  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00224812_v71_n4_p1411_Becher  |y Registro en la Biblioteca Digital 
961 |a paper_00224812_v71_n4_p1411_Becher  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 67824