Adaptive stack filters in speckled imagery

Stack filters are a special case of non-linear filters. They have a good performance for filtering images with different types of noise while preserving edges and details. A stack filter decomposes an input image into several binary images according to a set of thresholds. Each binary image is filte...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Buemi, M.E
Otros Autores: Mejail, M.E, Jacobo, J.C, Gambini, M.J
Formato: Acta de conferencia Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Materias:
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Stack filters are a special case of non-linear filters. They have a good performance for filtering images with different types of noise while preserving edges and details. A stack filter decomposes an input image into several binary images according to a set of thresholds. Each binary image is filtered by using a boolean function. Adaptive stack filters are optimized filters that compute a boolean function by using a corrupted image and ideal image without noise. In this work the behaviour of an adaptive stack filter is evaluated for the classification of synthetic apreture radar (SAR) images, which are affected by speckle noise. With this aim it is carried out a Monte Carlo experiment in which simulated images are generated and then filtered with a stack filter trained with one of them. The results of their maximum likelihood classification are evaluated and then are compared with the results of classifying the images without previous filtering.
Bibliografía:Astola, J., Kuosmanen, P., (1997) Fundamentals of Nonlinear Digital Filtering, , CRC Press, Boca Raton
Coyle, E.J., Lin, J.-H., Gabbouj, M., Optimal stack filtering and the estimation and structural approaches to image processing (1989) IEEE Trans. Acoust., Speech, Signal Processing, 37, pp. 2037-2066
Coyle, J., Lin, J.-H., Stack filters and the mean absolute error criterion (1988) IEEE Trans. Acoust., Speech, Signal Processing, 36, pp. 1244-1254
Frery, A.C., Correia, A.H., Rennó, C.D., Freitas, C.C., Jacobo-Berlles, J., Mejail, M.E., Vasconcellos, K.L.P., Models for synthetic aperture radar image analysis (1999) Resenhas (IME-USP), 4 (1), pp. 45-77
Frery, A.C., Müller, H.-J., Yanasse, C.C.F., Sant'Anna, S.J.S., A model for extremely heterogeneous clutter (1996) IEEE Transactions on Geoscience and Remote Sensing, 35 (3), pp. 648-659
Goodman, J.W., Some fundamental properties of speckle (1976) Journal of the Optical Society of America, 66, pp. 1145-1150
J.Lin, H., M.Sellke, T., and J.Coyle, E. (1990). Adaptive stack filtering under the mean absolute error criterion. IEEE Trans. Acoust., Speech, Signal Process, 38:938-954; Lin, J.-H., Kim, Y., Fast algorithms for training stack filters (1994) IEEE Trans. Signal Processing, 42 (3), pp. 772-781
Mejail, M.E., (1999) La Distribucin GA0 en el modelado y Anlisis de Imgenes SAR, , PhD thesis, Departamento de Computacin, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
Mejail, M.E., Frery, A.C., Jacobo-Berlles, J., Bustos, O.H., Approximation of distributions for SAR images: Proposal, evaluation and practical consequences (2001) Latin American Applied Research, 31, pp. 83-92
Mejail, M.E., Jacobo-Berlles, J., Frery, A.C., Bustos, O.H., Classification of SAR images using a general and tractable multiplicative model (2003) International Journal of Remote Sensing, 24 (18), pp. 3565-3582
Oliver, C., Quegan, S., (1998) Understanding synthetic aperture radar images, , Artech House
Wendt, P., Coyle, E. J., and N.C. Gallangher, J. (1986). Stack filters. IEEE Trans. Acoust. Speech Signal Processing, 34:898-911; Yoo, J., Fong, K. L., Huang, J.-J., Coyle, E. J., and III, G. B. A. (1999). A fast algorithm for designing stack filters. IEEE Trans.on image processing, 8(8):772-781A4 - Setubal Polytechnic Institute
ISBN:9728865406
9789728865405