Adaptive stack filters in speckled imagery
Stack filters are a special case of non-linear filters. They have a good performance for filtering images with different types of noise while preserving edges and details. A stack filter decomposes an input image into several binary images according to a set of thresholds. Each binary image is filte...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , |
| Formato: | Acta de conferencia Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2006
|
| Materias: | |
| Acceso en línea: | Registro en Scopus Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 06079caa a22007097a 4500 | ||
|---|---|---|---|
| 001 | PAPER-6849 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518203634.0 | ||
| 008 | 190411s2006 xx ||||fo|||| 10| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-75649138735 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Buemi, M.E. | |
| 245 | 1 | 0 | |a Adaptive stack filters in speckled imagery |
| 260 | |c 2006 | ||
| 270 | 1 | 0 | |m Buemi, M. E.; Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I. Ciudad Universitaria, 1428, Buenos Aires, Argentina; email: mebuemi@dc.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Astola, J., Kuosmanen, P., (1997) Fundamentals of Nonlinear Digital Filtering, , CRC Press, Boca Raton | ||
| 504 | |a Coyle, E.J., Lin, J.-H., Gabbouj, M., Optimal stack filtering and the estimation and structural approaches to image processing (1989) IEEE Trans. Acoust., Speech, Signal Processing, 37, pp. 2037-2066 | ||
| 504 | |a Coyle, J., Lin, J.-H., Stack filters and the mean absolute error criterion (1988) IEEE Trans. Acoust., Speech, Signal Processing, 36, pp. 1244-1254 | ||
| 504 | |a Frery, A.C., Correia, A.H., Rennó, C.D., Freitas, C.C., Jacobo-Berlles, J., Mejail, M.E., Vasconcellos, K.L.P., Models for synthetic aperture radar image analysis (1999) Resenhas (IME-USP), 4 (1), pp. 45-77 | ||
| 504 | |a Frery, A.C., Müller, H.-J., Yanasse, C.C.F., Sant'Anna, S.J.S., A model for extremely heterogeneous clutter (1996) IEEE Transactions on Geoscience and Remote Sensing, 35 (3), pp. 648-659 | ||
| 504 | |a Goodman, J.W., Some fundamental properties of speckle (1976) Journal of the Optical Society of America, 66, pp. 1145-1150 | ||
| 504 | |a J.Lin, H., M.Sellke, T., and J.Coyle, E. (1990). Adaptive stack filtering under the mean absolute error criterion. IEEE Trans. Acoust., Speech, Signal Process, 38:938-954; Lin, J.-H., Kim, Y., Fast algorithms for training stack filters (1994) IEEE Trans. Signal Processing, 42 (3), pp. 772-781 | ||
| 504 | |a Mejail, M.E., (1999) La Distribucin GA0 en el modelado y Anlisis de Imgenes SAR, , PhD thesis, Departamento de Computacin, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires | ||
| 504 | |a Mejail, M.E., Frery, A.C., Jacobo-Berlles, J., Bustos, O.H., Approximation of distributions for SAR images: Proposal, evaluation and practical consequences (2001) Latin American Applied Research, 31, pp. 83-92 | ||
| 504 | |a Mejail, M.E., Jacobo-Berlles, J., Frery, A.C., Bustos, O.H., Classification of SAR images using a general and tractable multiplicative model (2003) International Journal of Remote Sensing, 24 (18), pp. 3565-3582 | ||
| 504 | |a Oliver, C., Quegan, S., (1998) Understanding synthetic aperture radar images, , Artech House | ||
| 504 | |a Wendt, P., Coyle, E. J., and N.C. Gallangher, J. (1986). Stack filters. IEEE Trans. Acoust. Speech Signal Processing, 34:898-911; Yoo, J., Fong, K. L., Huang, J.-J., Coyle, E. J., and III, G. B. A. (1999). A fast algorithm for designing stack filters. IEEE Trans.on image processing, 8(8):772-781A4 - Setubal Polytechnic Institute | ||
| 520 | 3 | |a Stack filters are a special case of non-linear filters. They have a good performance for filtering images with different types of noise while preserving edges and details. A stack filter decomposes an input image into several binary images according to a set of thresholds. Each binary image is filtered by using a boolean function. Adaptive stack filters are optimized filters that compute a boolean function by using a corrupted image and ideal image without noise. In this work the behaviour of an adaptive stack filter is evaluated for the classification of synthetic apreture radar (SAR) images, which are affected by speckle noise. With this aim it is carried out a Monte Carlo experiment in which simulated images are generated and then filtered with a stack filter trained with one of them. The results of their maximum likelihood classification are evaluated and then are compared with the results of classifying the images without previous filtering. |l eng | |
| 593 | |a Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I. Ciudad Universitaria, 1428, Buenos Aires, Argentina | ||
| 690 | 1 | 0 | |a CLASSIFICATION |
| 690 | 1 | 0 | |a SINTHETIC APERTURE RADAR |
| 690 | 1 | 0 | |a SPECKLE |
| 690 | 1 | 0 | |a STACK FILTER |
| 690 | 1 | 0 | |a CLASSIFICATION |
| 690 | 1 | 0 | |a CORRUPTED IMAGES |
| 690 | 1 | 0 | |a IDEAL IMAGES |
| 690 | 1 | 0 | |a INPUT IMAGE |
| 690 | 1 | 0 | |a MAXIMUM LIKELIHOOD CLASSIFICATIONS |
| 690 | 1 | 0 | |a MONTE CARLO EXPERIMENTS |
| 690 | 1 | 0 | |a NONLINEAR FILTER |
| 690 | 1 | 0 | |a SIMULATED IMAGES |
| 690 | 1 | 0 | |a SPECKLE NOISE |
| 690 | 1 | 0 | |a STACK FILTERS |
| 690 | 1 | 0 | |a BINARY IMAGES |
| 690 | 1 | 0 | |a BOOLEAN FUNCTIONS |
| 690 | 1 | 0 | |a COMPUTER VISION |
| 690 | 1 | 0 | |a MAXIMUM LIKELIHOOD |
| 690 | 1 | 0 | |a SPECKLE |
| 690 | 1 | 0 | |a SYNTHETIC APERTURE RADAR |
| 650 | 1 | 7 | |2 spines |a RADAR |
| 700 | 1 | |a Mejail, M.E. | |
| 700 | 1 | |a Jacobo, J.C. | |
| 700 | 1 | |a Gambini, M.J. | |
| 711 | 2 | |c Setubal |d 25 February 2006 through 28 February 2006 |g Código de la conferencia: 79053 | |
| 773 | 0 | |d 2006 |g v. 1 |h pp. 33-40 |p VISAPP - Proc. Int. Conf. Comput. Vis. Theory Appl. |n VISAPP 2006 - Proceedings of the 1st International Conference on Computer Vision Theory and Applications |z 9728865406 |z 9789728865405 |t VISAPP 2006 - 1st International Conference on Computer Vision Theory and Applications | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-75649138735&partnerID=40&md5=1f695690c0a0cb5eda76ea4a5ef1669c |y Registro en Scopus |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_97288654_v1_n_p33_Buemi |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97288654_v1_n_p33_Buemi |y Registro en la Biblioteca Digital |
| 961 | |a paper_97288654_v1_n_p33_Buemi |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/conferenceObject |a info:ar-repo/semantics/documento de conferencia |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 67802 | ||