Analysis of the solution of the elastic light scattering inverse problem for polymeric emulsions

We consider the problem of inversion of elastic light scattering (ELS) measurements from polymeric emulsions, to obtain its particle size distribution (PSD) and its refractive index. The mathematical formulation results in a nonlinear inverse problem. A Fredholm integral equation of the first kind a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Frontini, G.L
Otros Autores: Berdaguer, E.M.F
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2007
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06988caa a22005897a 4500
001 PAPER-6796
003 AR-BaUEN
005 20230518203630.0
008 190411s2007 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33847152048 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Frontini, G.L. 
245 1 0 |a Analysis of the solution of the elastic light scattering inverse problem for polymeric emulsions 
260 |c 2007 
270 1 0 |m Frontini, G.L.; Instituto de Investigación en Ciencia y Tecnología de Materiales (INTEMA), Univ. Nac. de Mar del Plata, Mar del Plata, Argentina; email: gfrontin@fi.mdp.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Mie, G., Beitrage zur Optic truber Medien speziell kolloidaler Metallosungen (1908) Annals of Physics (Leipzig), 25, pp. 377-445 
504 |a Glatter, O., Holer, M., Interpretation of elastic light scattering data III. Determination of size distributions of polydisperse systems (1988) Journal of Colloid and Interface Science, 2 (122), pp. 496-506 
504 |a Wyatt, P.J., Some chemical, physical and optical properties of fly ash particles (1980) Applied Optics, 19, pp. 975-983 
504 |a Frontini, G.L., Elicabe, G.E., A novel methodology to estimate the particle size distribution of latex using relative measurements of elastic light scattering and turbidimetry (2000) Journal of Chemometrics, 14, pp. 51-61 
504 |a Ludlow, I.K., Everitt, J., Inverse Mie problem (2000) J. Opt. Soc. Am. A, 17 (12), pp. 2229-2235 
504 |a Zakovic, S., Ulanowsdki, Z., Bartholomew-Biggs, M.C., Application of global optimization to particle identification using light scattering (1998) Inverse Problems, 14, pp. 1053-1067 
504 |a Hodgson, R.J.W., Genetic algorithm approach to particle identification by light scattering (2000) Journal of Colloid and Interface Science, 229, pp. 399-406 
504 |a Glatter, O., Siebere, J., Schnablegger, H., A comparative study on different scattering techniques and data evaluation methods for sizing of colloidal systems using light scattering (1991) Particles and Particle System Characterization, 8, pp. 274-281 
504 |a Schnablegger, H., Glatter, O., Simultaneous determination of size distribution and refractive index of colloidal particles from static light-scattering experiments (1993) Journal of Colloid and Interface Science, 158, pp. 228-242 
504 |a Jones, M.R., Curry, B.P., Brewster, M.Q., Leong, K.H., Inversion of light-scattering measurements for particle size and optical constants: Theoretical study (1994) Applied Optics, 33, p. 18 
504 |a Frontini, G.L., Fernández Berdaguer, E.M., Inversion of elastic light scattering measurements to determine refractive index and particle size distribution of polymeric emulsions (2003) Inverse Problems in Engineering, 11 (4), pp. 329-340 
504 |a Bohren, C., Huffman, D., (1983) Absorption and Scattering of Light by Small Particles, , New York: Wiley 
504 |a Devon, M.J., Rudin, A., A simple technique for measuring the refractive index of polymer latexes at various wavelengths (1987) Journal of Applied Polymer Science, 34, pp. 469-476 
504 |a Khairullina, A.Y., Makarevich, S.A., Klyubin, V.V., Determination of the imaginary part of complex refractive index and other optical parameters of a latex suspension in water in the visible spectral range (1998) Optics and Spectroscopy, 85 (1), pp. 95-98 
504 |a Barber, O.W., Hill, S.C., (1990) Computational Light Scattering, , Singapore: World Scientific 
504 |a Groetsch, C.W., (1993) Inverse Problems in the Mathematical Sciences, , V. Verlag Ed, Wiesbaden, Germany: Vieweg 
504 |a Tikhonov, A.N., Arsenin, V., (1977) Solution of Ill-posed Problems, , New York: Wiley 
504 |a Phillips, D.L., A technique for the numerical solution of certain integral equations of the first kind (1962) Journal of AMC, 9, pp. 84-91 
504 |a Golub, G.H., Heath, M., Wahba, G., Generalized cross validation as a method for choosing a good parameter (1979) Technometrics, 21, p. 215 
504 |a Neubauer, A., An a posteriori parameter choice for Tikhonov regularization in the presence of modeling error (1988) Applied Numerical Mathematics, 4, pp. 507-519 
504 |a Hansen, P.C., (1998) Rank-deficient and Discrete Ill-posed Problems, Numerical Aspects of Linear Inversion, , Philadelphia: Siam 
520 3 |a We consider the problem of inversion of elastic light scattering (ELS) measurements from polymeric emulsions, to obtain its particle size distribution (PSD) and its refractive index. The mathematical formulation results in a nonlinear inverse problem. A Fredholm integral equation of the first kind appears with an unknown parameter in its kernel. We discuss the existence, uniqueness, and stability of the generalized solutions of the problem when it is stated as a minimization problem with a least square functional. First, we assume that the PSD is known, and for this case we prove that the solution exists and is unique as long as the relation between the measurements and the parameter is by an injective function. Then, we use this result to state sufficient conditions for the complete problem. The analysis of existence and uniqueness of the solution for the problem in hand is supported by numerical simulation. The Phillips-Tikhonov regularization method is proposed to stabilize the problem when noisy-data is available.  |l eng 
536 |a Detalles de la financiación: Universidad Nacional del Centro de la Provincia de Buenos Aires 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: We want to thank the financial support from CONICET, Universidad Nacional de Mar del Plata and Universidad Nacional de Buenos Aires (Argentina). 
593 |a Instituto de Investigación en Ciencia y Tecnología de Materiales (INTEMA), Univ. Nac. de Mar del Plata, Mar del Plata, Argentina 
593 |a Instituto de Cálculo FCEyN, Fac. Ingeniería, Univ. Nac. de Buenos Aires, Argentina 
700 1 |a Berdaguer, E.M.F. 
773 0 |d 2007  |g v. 15  |h pp. 123-135  |k n. 2  |p Inverse Probl. Sci. Eng.  |x 17415977  |t Inverse Problems in Science and Engineering 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33847152048&doi=10.1080%2f17415970600573940&partnerID=40&md5=409671f59592b5724fb9a6ed2c64e548  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1080/17415970600573940  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_17415977_v15_n2_p123_Frontini  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17415977_v15_n2_p123_Frontini  |y Registro en la Biblioteca Digital 
961 |a paper_17415977_v15_n2_p123_Frontini  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 67749