Plant cell proliferation inside an inorganic host

In recent years, much attention has been paid to plant cell culture as a tool for the production of secondary metabolites and the expression of recombinant proteins. Plant cell immobilization offers many advantages for biotechnological processes. However, the most extended matrices employed, such as...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Perullini, M.
Otros Autores: Rivero, M.M, Jobbágy, M., Mentaberry, A., Bilmes, S.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2007
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09502caa a22010337a 4500
001 PAPER-6773
003 AR-BaUEN
005 20230518203629.0
008 190411s2007 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-37849185261 
024 7 |2 cas  |a Silicon Dioxide, 7631-86-9 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JBITD 
100 1 |a Perullini, M. 
245 1 0 |a Plant cell proliferation inside an inorganic host 
260 |c 2007 
270 1 0 |m Mentaberry, A.; Laboratorio de Agrobiotecnología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina; email: amenta@dna.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Abranches, R., Marcel, S., Arcalis, E., Altmann, F., Fevereiro, P., Stoger, E., Plants as bioreactors: a comparative study suggests that Medicago truncatula is a promising production system (2005) J. Biotechnol., 120, pp. 121-134 
504 |a Boninsegna, S., Bosetti, P., Carturan, G., Dellagiacoma, G., Dal Monte, R., Rossi, M., Encapsulation of individual pancreatic islets by sol-gel SiO 2 : a novel procedure for perspective cellular grafts (2003) J. Biotechnol., 100, pp. 277-286 
504 |a Böttcher, H., Soltmann, U., Mertig, M., Pompe, W., Biocers: ceramics with incorporated microorganisms for biocatalytic, biosortive and functional materials development (2004) J. Mater. Chem., 14, pp. 2176-2188 
504 |a Bourgaud, F., Gravot, A., Milesi, S., Gontier, E., Production of plant secondary metabolites: a historical perspective (2001) Plant Sci., 161, pp. 839-851 
504 |a Davis, M.E., Ordered porous materials for emerging applications (2002) Nature, 417, pp. 813-820 
504 |a Dörnenburg, H., Evaluation of immobilization effects on metabolic activities and productivity in plant cell processes (2004) Process Biochem., 39, pp. 1369-1375 
504 |a Ferrer, M.L., Garcia-Carvajal, Z.Y., Yuste, L., Rojo, F., del Monte, F., Bacteria viability in sol-gel materials revisited: Cryo-SEM as a suitable tool to study the structural integrity of encapsulated bacteria (2006) Chem. Mater., 18 (6), pp. 1458-1463 
504 |a Hellwig, S., Drossard, J., Twyman, R.M., Fischer, R., Plant cell cultures for the production of recombinant proteins (2004) Nat. Biotechnol., 22, pp. 1415-1422 
504 |a Kataoka, K., Nagao, Y., Nukui, T., Akiyama, I., Tsuru, K., Hayakawa, S., Osaka, A., Huh, N., An organic-inorganic hybrid scaffold for the culture of HepG2 cells in a bioreactor (2005) Biomaterials, 26, pp. 2509-2516 
504 |a Kato, K., Matsumoto, T., Koiwai, S., Mizusaki, S., Nishida, K., Nogushi, M., Tamaki, E., Liquid suspension culture of tobacco cells (1972) Ferment Technology Today, pp. 689-695. , Terui G. (Ed), Society of Fermentation Technology, Osaka 
504 |a Kieran, P.M., MacLoughlin, P.F., Malone, D.M., Plant cell suspension cultures: some engineering considerations (1997) J. Biotechnol., 59, pp. 39-52 
504 |a Kuncova, G., Podrazky, O., Ripp, S., Trögl, J., Sayler, G.S., Demnerova, K., Vankova, R., Monitoring of the viability of cells immobilized by sol-gel process (2004) J. Sol-Gel Sci. Technol., 31, pp. 1-8 
504 |a Moon, K.H., Honda, H., Kobayashi, T., Development of a bioreactor suitable for embryogenic callus culture (1999) J. Biosci. Bioeng., 87, pp. 661-665 
504 |a Murashige, T., Skoog, F., A revised medium for rapid growth and bio assays with tobacco tissue cultures (1962) Physiol. Plant, 15, pp. 473-497 
504 |a Nagata, T., Nemoto, Y., Hasezawa, S., Tobacco BY-2 cell-line as the hela-cell in the cell biology of higher-plants (1992) Int. Rev. Cytol., 132, pp. 1-30 
504 |a Nassif, N., Coiffier, A., Coradin, T., Roux, C., Bouvet, O., Livage, J., Viability of bacteria in hybrid aqueous silica gels (2002) J. Sol-Gel Sci. Technol., 26, pp. 1-4 
504 |a Onishi, N., Sakamoto, Y., Hirosawa, T., Synthetic seed as an application of mass production of somatic embryos (1994) Plant Cell Tissue Organ Cult., 39, pp. 137-145 
504 |a Perullini, M., Jobbágy, M., Soller-Illia, G.J.A.A., Bilmes, S.A., Cellular growth at cavities created inside silica monoliths synthesized by sol-gel (2005) Chem. Mater., 17, pp. 3806-3808 
504 |a Ripp, S., Nievens, D.E., Ahn, Y., Werner, C., Jerrell, J., Eastern, J.P., Cox, C.D., Sayler, G.S., Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control (2000) Environ. Sci. Technol., 34, pp. 846-853 
504 |a Vaněk, T., Valterová, I., Vaňková, R., Vaisar, T., Biotransformation of (-)limonene using Solanum aviculare and Dioscorea deltoidea immobilized plant cells (1999) Biotechol. Lett., 21, pp. 625-628 
504 |a Vidinha, P., Augusto, V., Almeida, M., Fonseca, I., Fidalgo, A., Ilharco, L., Cabral, J.M.S., Barreiros, S., Sol-gel encapsulation: an efficient and versatile immobilization technique for cutinase in non-aqueous media (2006) J. Biotechnol., 121, pp. 23-33 
504 |a Wen Su, W., Jun He, B., Liang, H., Sun, S., A perfusion air-lift bioreactor for high density plant cell cultivation and secreted protein production (1996) J. Biotechnol., 50, pp. 225-233 
520 3 |a In recent years, much attention has been paid to plant cell culture as a tool for the production of secondary metabolites and the expression of recombinant proteins. Plant cell immobilization offers many advantages for biotechnological processes. However, the most extended matrices employed, such as calcium-alginate, cannot fully protect entrapped cells. Sol-gel chemistry of silicates has emerged as an outstanding strategy to obtain biomaterials in which living cells are truly protected. This field of research is rapidly developing and a large number of bacteria and yeast-entrapping ceramics have already been designed for different applications. But even mild thermal and chemical conditions employed in sol-gel synthesis may result harmful to cells of higher organisms. Here we present a method for the immobilization of plant cells that allows cell growth at cavities created inside a silica matrix. Plant cell proliferation was monitored for a 6-month period, at the end of which plant calli of more than 1 mm in diameter were observed inside the inorganic host. The resulting hybrid device had good mechanical stability and proved to be an effective barrier against biological contamination, suggesting that it could be employed for long-term plant cell entrapment applications. © 2006 Elsevier B.V. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 04-26102, PICT 06-10621, PID 269 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACyT X-093 
536 |a Detalles de la financiación: Trametes trogii strain was kindly supplied by Dr. Flavia Forchiassin. This work was partially supported by Universidad de Buenos Aires (UBACyT X-093), Agencia Nacional de Promoción Científica y Tecnológica (PICT 04-26102, PICT 06-10621 and PID 269). SAB, MJ and AM are research scientists of CONICET (Argentina). Appendix A 
593 |a INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina 
593 |a Laboratorio de Agrobiotecnología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina 
690 1 0 |a PLANT CELL IMMOBILIZATION 
690 1 0 |a SILICA MATRIX 
690 1 0 |a SOL-GEL 
690 1 0 |a BACTERIA 
690 1 0 |a PLANT CELL CULTURE 
690 1 0 |a PLANTS (BOTANY) 
690 1 0 |a SILICA 
690 1 0 |a SOL-GELS 
690 1 0 |a BIOLOGICAL CONTAMINATION 
690 1 0 |a PLANT CELL IMMOBILIZATION 
690 1 0 |a SILICA MATRIX 
690 1 0 |a SOL-GEL CHEMISTRY 
690 1 0 |a BIOTECHNOLOGY 
690 1 0 |a ANALYTIC METHOD 
690 1 0 |a ARTICLE 
690 1 0 |a CELL GROWTH 
690 1 0 |a CELL PROLIFERATION 
690 1 0 |a CONTAMINATION 
690 1 0 |a EXTRACELLULAR MATRIX 
690 1 0 |a HOST 
690 1 0 |a IMMOBILIZED CELL 
690 1 0 |a MICROBIAL CONTAMINATION 
690 1 0 |a NONHUMAN 
690 1 0 |a PLANT CELL 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a CELL CULTURE TECHNIQUES 
690 1 0 |a CELL PROLIFERATION 
690 1 0 |a CELLS, IMMOBILIZED 
690 1 0 |a PHLOEM 
690 1 0 |a SILICON DIOXIDE 
690 1 0 |a TOBACCO 
700 1 |a Rivero, M.M. 
700 1 |a Jobbágy, M. 
700 1 |a Mentaberry, A. 
700 1 |a Bilmes, S.A. 
773 0 |d 2007  |g v. 127  |h pp. 542-548  |k n. 3  |p J. Biotechnol.  |x 01681656  |w (AR-BaUEN)CENRE-5458  |t Journal of Biotechnology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-37849185261&doi=10.1016%2fj.jbiotec.2006.07.024&partnerID=40&md5=c0a519a9ea57e7dfe73e40d5723f33e7  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jbiotec.2006.07.024  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01681656_v127_n3_p542_Perullini  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01681656_v127_n3_p542_Perullini  |y Registro en la Biblioteca Digital 
961 |a paper_01681656_v127_n3_p542_Perullini  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 67726