Surface behavior of N-dodecylimidazole at air/water interfaces

Using molecular dynamics techniques, we investigate surface states of the surfactant N-dodecylimidazole (DIm) in its basic and acid forms adsorbed at the water/air interface. Two different surface coverages were examined: an infinitely diluted detergent and a saturated monolayer. Spatial and orienta...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rodriguez, J.
Otros Autores: Laria, D.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2007
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09247caa a22011177a 4500
001 PAPER-6766
003 AR-BaUEN
005 20230518203629.0
008 190411s2007 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33847681950 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Rodriguez, J. 
245 1 0 |a Surface behavior of N-dodecylimidazole at air/water interfaces 
260 |c 2007 
270 1 0 |m Laria, D.; Unidad Actividad Química, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, 1429, Buenos Aires, Argentina; email: dhlaria@cnea.gov.ar 
506 |2 openaire  |e Política editorial 
504 |a A comprehensive description of recent advances in reactivity at water/air interfaces is presented in Chem. Rev. 2006, 106, Issue 4; Benjamin, I., (1995) Acc. Chem. Res, 28, p. 233 
504 |a (1996) Chem. Rev, 96, p. 1449 
504 |a Annu, (1997) Rev. Phys. Chem, 48, p. 407 
504 |a Richmond, G.L., (2002) Chem. Rev, 102, p. 2693 
504 |a Mucha, M., Frigato, T., Levering, L.M., Allen, H.C., Tobias, D.J., Dang, L.X., Jungwirth, P., (2005) J. Phys. Chem. B, 109, p. 7617 
504 |a Petersen, P.B., Saykally, R.J., Mucha, M., Jungwirth, P., (2005) J. Phys. Chem. B, 109, p. 10915 
504 |a Gragson, D.E., Richmond, G.L., (1998) J. Am. Chem. Soc, 120, p. 366 
504 |a Zimdars, D.J., Dadap, I., Eisenthal, K.B., Heinz, T.F., (1999) Chem. Phys. Lett, 301, p. 112 
504 |a Zimdars, D., Eisenthal, K.B., (1999) J. Phys. Chem. A, 103, p. 10567 
504 |a Zimdars, D., Eisenthal, K.B., (2001) J. Phys. Chem. B, 105, p. 3393 
504 |a Pantano, D.A., Laria, D., (2003) J. Phys. Chem. B, 107, p. 297 
504 |a Smart, J.L., McCammon, J.A., (1996) J. Am. Chem. Soc, 118, p. 2283 
504 |a Wang, H., Zhao, X., Eisenthal, K.B., (2000) J. Phys. Chem. B, 104, p. 8855 
504 |a Xiao, X., Vogel, V., Shen, Y.R., Marowsky, G., (1991) J. Chem. Phys, 94, p. 2315 
504 |a Benjamin, I., Pohorille, A., (1993) J. Chem. Phys, 98, p. 236 
504 |a Fitchett, B.D., Conboy, J.C., (2004) J. Phys. Chem. B, 108, p. 20255 
504 |a Bowers, J., Butts, C.P., Martin, P.J., Vergara-Gutierrez, M.C., Heenan, R.K., (2004) Langmuir, 20, p. 2191 
504 |a de Duve, C., de Barsy, T., Poole, B., Trouet, A., Tulkens, P., van Hoof, F., (1974) Biochem. Pharmacol, 23, p. 2495 
504 |a Firestone, R.A., Pisano, J.M., (1979) J. Med. Chem, 22, p. 1130 
504 |a Miller, D.K., Griggiths, E., Lenard, J., Firestone, R.A., (1983) J. Cell Biol, 97, p. 1841 
504 |a Forster, S., Scarlett, L., Lloyd, J.B., (1987) Biochem. Biophys. Acta, 924, p. 452 
504 |a Boyer, M.J., Horn, I., Firestone, R.A., Steele-Norwood, D., Tannock, I.F., (1993) Br. J. Cancer, 67, p. 81 
504 |a Čuma, M., Schmitt, U.W., Voth, G.A., (2000) Chem. Phys, 258, p. 187 
504 |a Čuma, M., Schmitt, U.W., Voth, G.A., (2001) J. Phys. Chem. A, 105, p. 2814 
504 |a Petersen, P.B., Saykally, R.J., (2005) J. Phys. Chem. B, 109, p. 7976 
504 |a Tarbuck, T.L., Ota, S.T., Richmond, G.L., (2006) J. Am. Chem. Soc, 128, p. 14519 
504 |a Petersen, M.K., Iyengar, S.S., Day, T.J.F., Voth, G.A., J. Phys. Chem, 52004 (108), p. 14804 
504 |a Wang, H., Second Harmonic Generation Studies, , http://digitalcommons. libraries.columbia.edu/dissertations/AAI9706914, at Liquid Interfaces. Ph.D. Thesis Defense Dissertation, Columbia University, New York, 1996; Chapter 3. An electronic version of this manuscript can be found at 
504 |a Wang, H., Zhao, X., Eisenthal, K.B., (2000) J. Phys. Chem. B, 104, p. 8855 
504 |a Dang, X.L., Pettitt, B.M., (1987) J. Phys. Chem, 91, p. 3349 
504 |a Berendsen, H.J.C., van der Spoel, D., van Drunen, R., (1995) Comput. Phys. Commun, 91, p. 43 
504 |a Lindahl, E., Hess, B., van der Spoel, D., (2001) J. Mol. Model, 7, p. 306 
504 |a Schuettelkope, A.W., van Aalten, D.M.F., (2004) Acta Crystallogr, D60, p. 1355 
504 |a Yeh, I.-C., Berkowitz, M.L., (1999) J. Chem. Phys, 111, p. 3155 
504 |a qvist, J., Warshel, A., (1993) Chem. Rev, 93, p. 2523 
504 |a Lobaugh, J., Voth, G.A., (1996) J. Chem. Phys, 104, p. 2056 
504 |a Schmitt, U.W., Voth, G.A., (1998) J. Phys. Chem. B, 102, p. 5547 
504 |a Schmitt, U.W., Voth, G.A., (1999) J. Chem. Phys, 111, p. 9361 
504 |a Vuilleumier, R., Borgis, D., (1998) J. Phys. Chem. B, 102, p. 4261 
504 |a Vuilleumier, R., Borgis, D., (1998) Chem. Phys. Lett, 284, p. 71 
504 |a Vuilleumier, R., Borgis, D., (1999) J. Chem. Phys, 111, p. 4251 
504 |a Laria, D., Martí, J., Guàrdia, E., (2004) J. Am. Chem. Soc, 126, p. 2125 
504 |a Maupin, C.M., Wong, K.F., Soudackov, A.V., Kim, S., Voth, G.A., (2006) J. Phys. Chem. A, 110, p. 631. , A similar modification was operated in a recent study of proton transfer. See 
504 |a Feynman, R.P., (1939) Phys. Rev, 56, p. 340 
504 |a Lenarcik, B., Ojczenasz, P., (2002) J. Heterocycl. Chem, 39, p. 287 
504 |a Geissler, P.L., Dellago, C., Chandler, D., (1999) J. Phys. Chem. B, 103, p. 3706. , For a detailed analysis of reaction coordinates for ion pair dissociation in solution, see 
504 |a Tepper, H.L., Voth, G.A., (2005) Biophys. J, 88, p. 3095 
504 |a Rodriguez, J., Laria, D., (2005) J. Phys. Chem. B, 109, p. 6473 
504 |a Wilson, M.A., Pohorille, A., Pratt, L.R., (1989) Chem. Phys. Lett, 129, p. 209 
504 |a Benjamin, I., (1991) J. Chem. Phys, 95, p. 3698 
504 |a Pohorille, A., Benjamin, I., (1991) J. Chem. Phys, 94, p. 5599 
504 |a Torrie, G.M., Valleau, J.P., (1974) Chem. Phys. Lett, 28, p. 578 
504 |a Valleau, J.P., Torrie, G.M., A guide for Monte Carlo for statistical mechanics (1977) Statistical Mechanics, Part A, pp. 169-194. , Berne, B. J, Ed, Plenum Press: New York 
504 |a Roux, B., (1995) Comput. Phys. Commun, 91, p. 275 
504 |a Lapid, H., Agmon, N., Petersen, M.K., Voth, G.A., (2005) J. Chem. Phys, 122, p. 14506 
504 |a In order to bring the two sets of curves to the same asymptotic behavior at large distances, the density of site γ at the surface, that is, ργ, was taken as half of the bulk value; For recent studies dealing for proton transfer in water in the close vicinity of a phospholipid membrane and in channels, see: Smondyrev, A. M, Voth, G. A. Biophys. J. 2003, 85, 864; Wu, Y., Voth, G.A., (2002) Biophys. J, 82, p. 1460 
504 |a Xu, J., Voth, G.A., (2005) Proc. Natl. Acad. Sci. U.S.A, 102, p. 6795 
520 3 |a Using molecular dynamics techniques, we investigate surface states of the surfactant N-dodecylimidazole (DIm) in its basic and acid forms adsorbed at the water/air interface. Two different surface coverages were examined: an infinitely diluted detergent and a saturated monolayer. Spatial and orientational correlations of the surfactants and the aqueous substrate are presented. At large surface coverages, Dim presents two solvation states with well differentiated structural and dynamical characteristics. Solvation of the protonated surfactant becomes unstable at large concentrations, while the relative stability of the surface states of N-dodecylimidazolium (DImH +) with respect to bulk states increases at infinite dilution. The surface acidic behavior of DImH+ was investigated using a multistate empirical valence bond Hamiltonian model. Our simulation results suggest that the acidic characteristics of Dim are enhanced at the surface. The differences are rationalized in terms of the distinctive features in the overall solvation structure of the reactive complex. © 2007 American Chemical Society.  |l eng 
593 |a Departamento de Quimica Inorganica, Analitica y Quimica-Fisica e INQUIMAE, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón II, 1428, Buenos Aires, Argentina 
593 |a Unidad Actividad Química, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, 1429, Buenos Aires, Argentina 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a HAMILTONIANS 
690 1 0 |a INTERFACES (MATERIALS) 
690 1 0 |a MATHEMATICAL MODELS 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a MONOLAYERS 
690 1 0 |a SURFACE PROPERTIES 
690 1 0 |a ACIDIC BEHAVIOR 
690 1 0 |a HAMILTONIAN MODEL 
690 1 0 |a NITROGEN COMPOUNDS 
700 1 |a Laria, D. 
773 0 |d 2007  |g v. 111  |h pp. 908-915  |k n. 2  |p J. Phys. Chem. C  |x 19327447  |t Journal of Physical Chemistry C 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33847681950&doi=10.1021%2fjp0650883&partnerID=40&md5=0da5c54e0989f94561f236812950c154  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/jp0650883  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19327447_v111_n2_p908_Rodriguez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v111_n2_p908_Rodriguez  |y Registro en la Biblioteca Digital 
961 |a paper_19327447_v111_n2_p908_Rodriguez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 67719