Photodynamic ultradeformable liposomes: Design and characterization

Hydrophobic ([tetrakis(2,4-dimetil-3-pentyloxi)-phthalocyaninate]zinc(II)) (ZnPc) and hydrophilic ([tetrakis(N,N,N-trimethylammoniumetoxi)-phthalocyaninate]zinc(II) tetraiodide) (ZnPcMet) phthalocyanines were synthesized and loaded in ultradeformable liposomes (UDL) of soybean phosphatidylcholine an...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Montanari, J.
Otros Autores: Perez, A.P, Di Salvo, F., Diz, V., Barnadas, R., Dicelio, L., Doctorovich, F., Morilla, M.J, Romero, E.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2007
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 22062caa a22019217a 4500
001 PAPER-6720
003 AR-BaUEN
005 20230518203625.0
008 190411s2007 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33846263014 
024 7 |2 cas  |a cholic acid, 32500-01-9, 361-09-1, 81-25-4; oxidoreductase, 9035-73-8, 9035-82-9, 9037-80-3, 9055-15-6; phosphatidylcholine, 55128-59-1, 8002-43-5; Indoles; Liposomes; Radiation-Sensitizing Agents; phthalocyanine, 574-93-6 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a IJPHD 
100 1 |a Montanari, J. 
245 1 0 |a Photodynamic ultradeformable liposomes: Design and characterization 
260 |c 2007 
270 1 0 |m Romero, E.L.; Laboratorio de Diseño de Estrategias de Targeting de Drogas (LDTD), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 180, Bernal, B1876BXD Buenos Aires, Argentina; email: elromero@unq.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Abok, K., Cadenas, E., Brunk, U., An experimental model system for leishmaniasis. Effects of porphyrin-compounds and menadione on Leishmania parasites engulfed by cultured macrophages (1988) Apmis, 96, pp. 543-551 
504 |a Abraham, W., Downing, D.T., Interaction between corneocytes and stratum corneum lipid liposomes in vitro (1990) Biochim. Biophys. Acta, 1021, pp. 119-125 
504 |a Almgren, M., Mixed micelles and other structures in the solubilization of bilayer lipid membranes by surfactants (2000) Biochim. Biophys. Acta, 1508, pp. 146-163 
504 |a Barry, B.W., Novel mechanisms and devices to enable successful transdermal drug delivery (2001) Eur. J. Pharm. Sci., 14, pp. 101-114 
504 |a Ben-Hur, E., Rosenthal, I., The phthalocyanines: a new class of mammalian cells photosensitizers with a potential for cancer phototherapy (1985) Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 47, pp. 145-147 
504 |a Berg, K., Moan, J., Lysosomes as photochemical targets (1994) Int. J. Cancer, 59, pp. 814-822 
504 |a Blank, I.H., Scheuplein, R.J., Transport into and within the skin (1969) Br. J. Dermatol., pp. 4-10 
504 |a Blum, J., Desjeux, P., Schwartz, E., Beck, B., Hatz, C., Treatment of cutaneous leishmaniasis among travelers (2004) J. Antimicrob. Chemother., 53, pp. 158-166 
504 |a Bötcher, C.J.F., Van Gent, C.M., Pries, C., A rapid and sensitive sub-micro phosphorus determination (1961) Anal. Chim. Acta, 24, pp. 203-204 
504 |a Calzavara-Pinton, P.G., Venturini, M., Sala, R., A comprehensive overview of photodynamic therapy in the treatment of superficial fungal infections of the skin (2005) J. Photochem. Photobiol. B, 78, pp. 1-6 
504 |a Cevc, G., (1995) Handbook of Biological Physics, pp. 465-490. , Lipowsky R.S.E. (Ed), Elsevier, Amsterdam 
504 |a Cevc, G., Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery (1996) Crit. Rev. Ther. Drug Carrier Syst., 13, pp. 257-388 
504 |a Cevc, G., Lipid vesicles and other colloids as drug carriers on the skin (2004) Adv. Drug Deliv. Rev., 56, pp. 675-711 
504 |a Cevc, G., Blume, G., Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force (1992) Biochim. Biophys. Acta, 1104, pp. 226-232 
504 |a Cevc, G., Blume, G., New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, transfersomes (2001) Biochim. Biophys. Acta, 1514, pp. 191-205 
504 |a Cevc, G., Blume, G., Biological activity and characteristics of triamcinolone-acetonide formulated with the self-regulating drug carriers, transfersomes (2003) Biochim. Biophys. Acta, 1614, pp. 156-164 
504 |a Cevc, G., Blume, G., Hydrocortisone and dexamethasone in very deformable drug carriers have increased biological potency, prolonged effect, and reduced therapeutic dosage (2004) Biochim. Biophys. Acta, 1663, pp. 61-73 
504 |a Cevc, G., Gebauer, D., Hydration-driven transport of deformable lipid vesicles through fine pores and the skin barrier (2003) Biophys. J., 84, pp. 1010-1024 
504 |a Cevc, G., Gebauer, D., Stieber, J., Schatzlein, A., Blume, G., Ultraflexible vesicles, transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin (1998) Biochim. Biophys. Acta, 1368, pp. 201-215 
504 |a Cevc, G., Schätzlein, A., Gebauer, D., Blume, G., (1993) Prediction of Percutaneous Penetration, 3 b, pp. 226-234. , Bain K.R., Hadgkraft J., James W.J., and Water K.A. (Eds), STS Publishing, Cardiff 
504 |a Conner, S.D., Schmid, S.L., Regulated portals of entry into the cell (2003) Nature, 422, pp. 37-44 
504 |a Cox, D., Lee, D.J., Dale, B.M., Calafat, J., Greenberg, S., A Rab11-containing rapidly recycling compartment in macrophages that promotes phagocytosis (2000) Proc. Natl. Acad. Sci. U.S.A., 97, pp. 680-685 
504 |a Das, K., Dube, A., Gupta, P.K., A spectroscopy study of photobleaching of chlorin p6 in different environments (2005) Dyes Pigments, pp. 201-205 
504 |a De Filippis, M.P., Fantetti, D.D., Roncucci, L., Synthesis of a new water-soluble octa-cationic phthalocyanine derivative for PDT (2000) Tetrahedron Lett., 41, pp. 9143-9147 
504 |a Decreau, R., Richard, M.J., Verrando, P., Chanon, M., Julliard, M., Photodynamic activities of silicon phthalocyanines against achromic M6 melanoma cells and healthy human melanocytes and keratinocytes (1999) J. Photochem. Photobiol. B, 48, pp. 48-56 
504 |a Dutta, S., Ray, D., Kolli, B.K., Chang, K.P., Photodynamic sensitization of Leishmania amazonensis in both extracellular and intracellular stages with aluminum phthalocyanine chloride for photolysis in vitro (2005) Antimicrob. Agents Chemother., 49, pp. 4474-4484 
504 |a El Maghraby, G.M., Williams, A.C., Barry, B.W., Oestradiol skin delivery from ultradeformable liposomes: refinement of surfactant concentration (2000) Int. J. Pharm., 196, pp. 63-74 
504 |a Enk, C.D., Fritsch, C., Jonas, F., Nasereddin, A., Ingber, A., Jaffe, C.L., Ruzicka, T., Treatment of cutaneous leishmaniasis with photodynamic therapy (2003) Arch. Dermatol., 139, pp. 432-434 
504 |a Essa, E.A., Bonner, M.C., Barry, B.W., Iontophoretic estradiol skin delivery and tritium exchange in ultradeformable liposomes (2002) Int. J. Pharm., 240, pp. 55-66 
504 |a Fang, J.Y., Hwang, T.L., Huang, Y.L., Fang, C.L., Enhancement of the transdermal delivery of catechins by liposomes incorporating anionic surfactants and ethanol (2006) Int. J. Pharm., 310, pp. 131-138 
504 |a Fernandez, D.A., Awruch, J., Dicelio, L.E., Photophysical and aggregation studies of t-butyl substituted Zn phthalocyanines (1996) Photochem. Photobiol., 63, pp. 784-792 
504 |a Fernandez, D.A., Dicelio, L.E., Awruch, J., Synthesis of two new N-alkyl substituted phthalocyanines (1995) J. Heterocycl. Chem., 32, pp. 519-522 
504 |a Fesq, H., Lehmann, J., Kontny, A., Erdmann, I., Theiling, K., Rother, M., Ring, J., Abeck, D., Improved risk-benefit ratio for topical triamcinolone acetonide in transfersome in comparison with equipotent cream and ointment: a randomized controlled trial (2003) Br. J. Dermatol., 149, pp. 611-619 
504 |a Fry, D.W., White, J.C., Goldman, I.D., Rapid separation of low molecular weight solutes from liposomes without dilution (1978) Anal. Biochem., 90, pp. 809-815 
504 |a Gardlo, K., Horska, Z., Enk, C.D., Rauch, L., Megahed, M., Ruzicka, T., Fritsch, C., Treatment of cutaneous leishmaniasis by photodynamic therapy (2003) J. Am. Acad. Dermatol., 48, pp. 893-896 
504 |a Hackam, D.J., Rotstein, O.D., Sjolin, C., Schreiber, A.D., Trimble, W.S., Grinstein, S., v-SNARE-dependent secretion is required for phagocytosis (1998) Proc. Natl. Acad. Sci. U.S.A., 95, pp. 11691-11696 
504 |a Heimburg, T., Ryba, N.J., Wurz, U., Marsh, D., Phase transition from a gel to a fluid phase of cubic symmetry in dimyristoylphosphatidylcholine/myristic acid (1:2, mol/mol) bilayers (1990) Biochim. Biophys. Acta, 1025, pp. 77-81 
504 |a Hofer, C., Gobel, R., Deering, P., Lehmer, A., Breul, J., Formulation of interleukin-2 and interferon-alpha containing ultradeformable carriers for potential transdermal application (1999) Anticancer Res., 19, pp. 1505-1507 
504 |a Hofland, H.E., Bouwstra, J.A., Bodde, H.E., Spies, F., Junginger, H.E., Interactions between liposomes and human stratum corneum in vitro: freeze fracture electron microscopical visualization and small angle X-ray scattering studies (1995) Br. J. Dermatol., 132, pp. 853-866 
504 |a Høgset, A., Prasmickaite, L., Selbo, P.K., Hellum, M., Engesaeter, B.O., Bonsted, A., Berg, K., Photochemical internalisation in drug and gene delivery (2004) Adv. Drug Deliv. Rev., 56, pp. 95-115 
504 |a Honeywell-Nguyen, P.L., Bouwstra, J.A., Vesicles as tool for transdermal and dermal delivery (2005) Drug Discovery Today: Technol., 2, pp. 67-74 
504 |a Hongcharu, W., Taylor, C.R., Chang, Y., Aghassi, D., Suthamjariya, K., Anderson, R.R., Topical ALA-photodynamic therapy for the treatment of acne vulgaris (2000) J. Invest. Dermatol., 115, pp. 183-192 
504 |a Kraljic, I., El Mohsni, S., A new method for the detection of singlet oxygen in aqueous solutions (1978) Photochem. Photobiol., 28, pp. 577-581 
504 |a Krieg, R.C., Messmann, H., Schlottmann, K., Endlicher, E., Seeger, S., Scholmerich, J., Knuechel, R., Intracellular localization is a cofactor for the phototoxicity of protoporphyrin IX in the gastrointestinal tract: in vitro study (2003) Photochem. Photobiol., 78, pp. 393-399 
504 |a Lagorio, M.G., Dicelio, L.E., San Román, E., Visible and near-IR spectroscopic and photochemical characterization of substituted metallophthalocyanines (1993) J. Photochem. Photobiol. A, 72, pp. 153-161 
504 |a Lang, K., Lehmann, P., Bolsen, K., Ruzicka, T., Fritsch, C., Aminolevulinic acid: pharmacological profile and clinical indication (2001) Expert Opin. Investig. Drugs, 10, pp. 1139-1156 
504 |a Liu, W., Jensen, T.J., Fronczek, F.R., Hammer, R.P., Smith, K.M., Vicente, M.G., Synthesis and cellular studies of nonaggregated water-soluble phthalocyanines (2005) J. Med. Chem., 48, pp. 1033-1041 
504 |a Liu, W., Lee, C., Chen, H., Mak, T.C.W., Ng, D.K.P., Synthesis, spectroscopic properties, and structure of tetrakis(24-dimethyl-3-pentyloxy)-phthalocyaninato metal complexes (2004) Eur. J. Inorg. Chem., pp. 286-292 
504 |a Magaraggia, M., Visona, A., Furlan, A., Pagnan, A., Miotto, G., Tognon, G., Jori, G., Inactivation of vascular smooth muscle cells photosensitised by liposome-delivered Zn(II)-phthalocyanine (2006) J. Photochem. Photobiol. B, 82, pp. 53-58 
504 |a Menon, G.K., New insights into skin structure: scratching the surface (2002) Adv. Drug Deliv. Rev., 54, pp. S3-S17 
504 |a Moan, J., Berg, K., The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen (1991) Photochem. Photobiol., 53, pp. 549-553 
504 |a Moan, J., Berg, K., Anholt, H., Madslien, K., Sulfonated aluminium phthalocyanines as sensitizers for photochemotherapy. Effects of small light doses on localization, dye fluorescence and photosensitivity in V79 cells (1994) Int. J. Cancer, 58, pp. 865-870 
504 |a Namiki, Y., Namiki, T., Date, M., Yanagihara, K., Yashiro, M., Takahashi, H., Enhanced photodynamic antitumor effect on gastric cancer by a novel photosensitive stealth liposome (2004) Pharmacol. Res., 50, pp. 65-76 
504 |a Nitzan, Y., Wexler, H.M., Finegold, S.M., Inactivation of anaerobic bacteria by various photosensitized porphyrins or by hemin (1994) Curr. Microbiol., 29, pp. 125-131 
504 |a Ochsner, M., Photophysical and photobiological processes in the photodynamic therapy of tumours (1997) J. Photochem. Photobiol. B, 39, pp. 1-18 
504 |a Oliveira, C.A., Machado, A.E., Pessine, F.B., Preparation of 100 nm diameter unilamellar vesicles containing zinc phthalocyanine and cholesterol for use in photodynamic therapy (2005) Chem. Phys. Lipids, 133, pp. 69-78 
504 |a Paquette, B., van Lier, J.E., (1992) Photodynamic Therapy, p. 195. , Dougherty B.W.H.A.T.J. (Ed), Marcel Dekker, New York 
504 |a Postigo, F., Mora, M., De Madariaga, M.A., Nonell, S., Sagrista, M.L., Incorporation of hydrophobic porphyrins into liposomes: characterization and structural requirements (2004) Int. J. Pharm., 278, pp. 239-254 
504 |a Prasmickaite, L., Høgset, A., Berg, K., Evaluation of different photosensitizers for use in photochemical gene transfection (2001) Photochem. Photobiol., 73, pp. 388-395 
504 |a Rama Krishna, Y.V., Marsh, D., Spin label ESR and 31P NMR studies of the cubic and inverted hexagonal phases of dimyristoylphosphatidylcholine/myristiic acid (1:2, mol/mol) mixtures (1990) Biochim. Biophys. Acta, 1024, pp. 89-94 
504 |a Rancan, F., Wiehe, A., Nobel, M., Senge, M.O., Omari, S.A., Bohm, F., John, M., Roder, B., Influence of substitutions on asymmetric dihydroxychlorins with regard to intracellular uptake, subcellular localization and photosensitization of Jurkat cells (2005) J. Photochem. Photobiol. B, 78, pp. 17-28 
504 |a Rodriguez, M.E., Moran, F., Bonansea, A., Monetti, M., Fernandez, D.A., Strassert, C.A., Rivarola, V., Dicelio, L.E., A comparative study of the photophysical and phototoxic properties of octakis(decyloxy)phthalocyaninato zinc(II), incorporated in a hydrophilic polymer, in liposomes and in non-ionic micelles (2003) Photochem. Photobiol. Sci., 2, pp. 988-994 
504 |a Sadzuka, Y., Tokutomi, K., Iwasaki, F., Sugiyama, I., Hirano, T., Konno, H., Oku, N., Sonobe, T., The phototoxicity of photofrin was enhanced by PEGylated liposome in vitro (2005) Cancer Lett. 
504 |a Schatzlein, A., Cevc, G., Non-uniform cellular packing of the stratum corneum and permeability barrier function of intact skin: a high-resolution confocal laser scanning microscopy study using highly deformable vesicles (transfersomes) (1998) Br. J. Dermatol., 138, pp. 583-592 
504 |a Scheuplein, R.J., Blank, I.H., Permeability of the skin (1971) Physiol. Rev., 51, pp. 702-747 
504 |a Seddon, J.M., Hogan, J.L., Warrender, N.A., Pebay-Peyroula, E., Structural studies of phospholipid cubic phases (1990) Progr. Colloid Polym. Sci., pp. 189-197 
504 |a Simoes, S., Moreira, J.N., Fonseca, C., Duzgunes, N., de Lima, M.C., On the formulation of pH-sensitive liposomes with long circulation times (2004) Adv. Drug Deliv. Rev., 56, pp. 947-965 
504 |a Stojiljkovic, I., Evavold, B.D., Kumar, V., Antimicrobial properties of porphyrins (2001) Expert Opin. Investig. Drugs, 10, pp. 309-320 
504 |a Strassert, C.A., Rodriguez, M.E., Fernandez, D.A., Dicelio, L.E., Awruch, J., Synthesis and properties of N-alkylsubstituted zinc(II) phthalocyaninates as potential agents for photodynamic therapy (2003) Curr. Top. Med. Chem., 3, pp. 165-173 
504 |a Straubinger, R.M., pH-sensitive liposomes for delivery of macromolecules into cytoplasm of cultured cells (1993) Methods Enzymol., 221, pp. 361-376 
504 |a Takeuchi, Y., Ichikawa, K., Yonezawa, S., Kurohane, K., Koishi, T., Nango, M., Namba, Y., Oku, N., Intracellular target for photosensitization in cancer antiangiogenic photodynamic therapy mediated by polycation liposome (2004) J. Control. Release, 97, pp. 231-240 
504 |a van den Bergh, B.A., Wertz, P.W., Junginger, H.E., Bouwstra, J.A., Elasticity of vesicles assessed by electron spin resonance, electron microscopy and extrusion measurements (2001) Int. J. Pharm., 217, pp. 13-24 
504 |a Verma, D.D., Verma, S., Blume, G., Fahr, A., Liposomes increase skin penetration of entrapped and non-entrapped hydrophilic substances into human skin: a skin penetration and confocal laser scanning microscopy study (2003) Eur. J. Pharm. Biopharm., 55, pp. 271-277 
504 |a Weiner, N., Lieb, L., (1998) Medical Applications of Liposomes, pp. 493-510. , Papahadjopoulos (Ed), Elsevier Science B.V 
504 |a Wilkinson, F., Helman, W.P., Rose, A.D., Rate constant for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation (1995) J. Phys. Chem. Ref. Data, 24, pp. 663-1021 
504 |a Yarmush, M.L., Thorpe, W.P., Strong, L., Rakestraw, S.L., Toner, M., Tompkins, R.G., Antibody targeted photolysis (1993) Crit. Rev. Ther. Drug Carrier Syst., 10, pp. 197-252 
504 |a Yu, C., Chen, S., Zhang, M., Shen, T., Spectroscopic studies and photodynamic actions of hypocrellin B in liposomes (2001) Photochem. Photobiol., 73, pp. 482-488 
520 3 |a Hydrophobic ([tetrakis(2,4-dimetil-3-pentyloxi)-phthalocyaninate]zinc(II)) (ZnPc) and hydrophilic ([tetrakis(N,N,N-trimethylammoniumetoxi)-phthalocyaninate]zinc(II) tetraiodide) (ZnPcMet) phthalocyanines were synthesized and loaded in ultradeformable liposomes (UDL) of soybean phosphatidylcholine and sodium cholate (6:1, w/w, ratio), resulting 100 nm mean size vesicles of negative Zeta potential, with encapsulation efficiencies of 85 and 53%, enthalpy of phase transition of 5.33 and 158 J/mmol for ZnPc and ZnPcMet, respectively, indicating their deep and moderate partition into UD matrices. Matrix elasticity of UDL-phthalocyanines resulted 28-fold greater than that of non-UDL, leaking only 25% of its inner aqueous content after passage through a nanoporous barrier versus 100% leakage for non-UDL. UDL-ZnPc made ZnPc soluble in aqueous buffer while kept the monomeric state, rendering singlet oxygen quantum yield (ΦΔ) similar to that obtained in ethanol (0.61), whereas UDL-ZnPcMet had a four-fold higher ΦΔ than that of free ZnPcMet (0.21). Free phthalocyanines were non-toxic at 1 and 10 μM, both in dark or upon irradiation at 15 J/cm2 on Vero and J-774 cells (MTT assay). Only liposomal ZnPc at 10 μM was toxic for J-774 cells under both conditions. Aditionally, endo-lysosomal confinement of the HPTS dye was kept after irradiation at 15 J/cm2 in the presence of UDL-phtalocyanines. This could lead to improve effects of singlet oxygen against intra-vesicular pathogen targets inside the endo-lysosomal system. © 2006 Elsevier B.V. All rights reserved.  |l eng 
593 |a Laboratorio de Diseño de Estrategias de Targeting de Drogas (LDTD), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 180, Bernal, B1876BXD Buenos Aires, Argentina 
593 |a Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon II, Argentina 
593 |a Centre de Estudis Biofísics, Universitat Autónoma de Barcelona, 08193 Cerdanyola, Catalunya, Spain 
593 |a Departament de Físicaquímica, Facultat de Farmácia, Universitat de Barcelona, Av. Joan XXIII, s/n, 08028 Barcelona, Catalunya, Spain 
690 1 0 |a PHTHALOCYANINES 
690 1 0 |a ULTRADEFORMABLE LIPOSOMES 
690 1 0 |a CHOLIC ACID 
690 1 0 |a LIPOSOME 
690 1 0 |a OXIDOREDUCTASE 
690 1 0 |a PHOSPHATIDYLCHOLINE 
690 1 0 |a PHTHALOCYANINE DERIVATIVE 
690 1 0 |a TETRAKIS(2,4 DIMETHYL 3 PENTYLOXY)PHTHALOCYANINATE ZINC 
690 1 0 |a TETRAKIS(N,N,N TRIMETHYLAMMONIUMETHOXY)PHTHALOCYANINATE ZINC TETRAIODIDE 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ABSORPTION SPECTROSCOPY 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ARTICLE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DIFFERENTIAL SCANNING CALORIMETRY 
690 1 0 |a DRUG CYTOTOXICITY 
690 1 0 |a DRUG DELIVERY SYSTEM 
690 1 0 |a DRUG STRUCTURE 
690 1 0 |a ENCAPSULATION 
690 1 0 |a FLUORESCENCE MICROSCOPY 
690 1 0 |a HYDROPHILICITY 
690 1 0 |a HYDROPHOBICITY 
690 1 0 |a NONHUMAN 
690 1 0 |a PHASE TRANSITION 
690 1 0 |a PHOTODYNAMICS 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a QUANTUM YIELD 
690 1 0 |a THERMODYNAMICS 
690 1 0 |a TRANSMISSION ELECTRON MICROSCOPY 
690 1 0 |a VERO CELL 
690 1 0 |a ZETA POTENTIAL 
690 1 0 |a ANIMALS 
690 1 0 |a CALORIMETRY, DIFFERENTIAL SCANNING 
690 1 0 |a CELL SURVIVAL 
690 1 0 |a CERCOPITHECUS AETHIOPS 
690 1 0 |a LEISHMANIASIS, CUTANEOUS 
690 1 0 |a LIPOSOMES 
690 1 0 |a MACROPHAGES 
690 1 0 |a MICE 
690 1 0 |a MICROSCOPY, ELECTRON, TRANSMISSION 
690 1 0 |a NANOTECHNOLOGY 
690 1 0 |a PHOTOCHEMOTHERAPY 
690 1 0 |a RADIATION-SENSITIZING AGENTS 
690 1 0 |a SPECTROMETRY, FLUORESCENCE 
690 1 0 |a SPECTROPHOTOMETRY, ULTRAVIOLET 
690 1 0 |a VERO CELLS 
650 1 7 |2 spines  |a INDOLES 
700 1 |a Perez, A.P. 
700 1 |a Di Salvo, F. 
700 1 |a Diz, V. 
700 1 |a Barnadas, R. 
700 1 |a Dicelio, L. 
700 1 |a Doctorovich, F. 
700 1 |a Morilla, M.J. 
700 1 |a Romero, E.L. 
773 0 |d 2007  |g v. 330  |h pp. 183-194  |k n. 1-2  |p Int. J. Pharm.  |x 03785173  |w (AR-BaUEN)CENRE-5301  |t International Journal of Pharmaceutics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33846263014&doi=10.1016%2fj.ijpharm.2006.11.015&partnerID=40&md5=478c315124f88bf393a94b03800c572a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.ijpharm.2006.11.015  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03785173_v330_n1-2_p183_Montanari  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03785173_v330_n1-2_p183_Montanari  |y Registro en la Biblioteca Digital 
961 |a paper_03785173_v330_n1-2_p183_Montanari  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 67673