Gene expression patterns in Euglena gracilis: Insights into the cellular response to environmental stress

To better understand Euglena gracilis gene expression under different stress conditions (Chromium, Streptomycin or darkness), we undertook a survey of the E. gracilis transcriptome by cDNA sequencing and microarray analysis. First, we constructed a non-normalized cDNA library from the E. gracilis UT...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: dos Santos Ferreira, V.
Otros Autores: Rocchetta, I., Conforti, V., Bench, S., Feldman, R., Levin, M.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2007
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14920caa a22013817a 4500
001 PAPER-6669
003 AR-BaUEN
005 20230518203622.0
008 190411s2007 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33846841175 
024 7 |2 Molecular Sequence Numbers  |a GENBANK: DN976397, DN976398, DN976399, DN976400, DN976401, DN976402, DN976403, DN976404, DN976405, DN976406, DN976407, DN976408, DN976409, DN976410, DN976411, DN976412, DN976413, DN976414, DN976415, DN976416, DN976417, DN976418, DN976419, DN976420, EC591293, EC591315, EC609911, EC609933, EC609974, EC610016, EC610025, EC610031, EC610053, EC611626, EC611710, EC611756, EC611762, EC611768, EC611789, EC611825, EC611837, EC611839, EC611844, EC611865, EC611866; 
024 7 |2 cas  |a chromium, 16065-83-1, 7440-47-3; streptomycin, 57-92-1; Chromium, 7440-47-3; DNA, Algal; DNA, Complementary; DNA, Protozoan; Streptomycin, 57-92-1 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a GENED 
100 1 |a dos Santos Ferreira, V. 
245 1 0 |a Gene expression patterns in Euglena gracilis: Insights into the cellular response to environmental stress 
260 |c 2007 
270 1 0 |m Levin, M.J.; Laboratorio de Biología Molecular de la Enfermedad de Chagas (LaBMECh) INGEBI, National Research Council (CONICET), Centro de Genómica Aplicada (CeGA), Vuelta de Obligado 2490 2P, 1428 Buenos Aires, Argentina; email: mlevin@dna.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Agy, M.B., Wambach, M., Foy, K., Katze, M.G., Expression of cellular genes in CD4 positive lymphoid cells infected by the human immunodeficiency virus, HIV-1: evidence for a host protein synthesis shut-off induced by cellular mRNA degradation (1990) Virology, 177 (1), pp. 251-258 
504 |a Aiba, H., Transcription of the Escherichia coli adenylate cyclase gene is negatively regulated by cAMP receptor protein (1985) J. Biol. Chem., 260, pp. 3063-3070 
504 |a Ben-Dov, C.P., Levin, M.J., Vazquez, M.P., Anlysis of the highly efficient pre-mRNA processing region HX1 of Tripanosoma cruzi (2005) Mol. Biochem. Parasitol., 140 (1), pp. 97-105 
504 |a Bowler, C., Chua, N., Emerging themes of plant signal transduction (1994) The Plant Cell, 6, pp. 1529-1541 
504 |a Buetow, D., (1982) The Biology of Euglena, III, pp. 200-201. , Academic Press, New York 
504 |a Cabiscol, E., Belli, G., Tamarit, J., Echave, P., Herrero, E., Ros, J., Mitochondrial Hsp60, resistance to oxidative stress, and the labile iron pool are closely connected in Saccharomyces cerevisiae (2002) J. Biol. Chem., 277 (46), pp. 44531-44538 
504 |a Cavalier-Smith, T., Kingdom Protozoa and its 18 phyla (1993) Microbiol. Rev., 57 (4), pp. 953-994 
504 |a Cervantes, C., Interactions of Chromium with microorganisms and plants (2001) FEMS Microbiol. Rev., 25 (3), pp. 335-347 
504 |a Clevel, W.S., Devlin, S.J., Locally weighted regression: an approach to regression analysis by local fitting (1988) J. Am. Stat. Assoc., 83, pp. 596-610 
504 |a Donahue, J.L., Okpodu, C.M., Cramer, C.L., Grabau, E.A., Alscher, R.G., Responses of antioxidants to paraquat in pea leaves (relationships to resistance) (1997) Plant Physiol., 113 (1), pp. 249-257 
504 |a Ernani, P., Sigaud-Kutner, T., Leitao, M., Okawoto, O., Morse, D., Colepicolo, P., Heavy metal induced oxidative stress in algae (2003) J. Phycol., 39, pp. 1008-1018 
504 |a Ewing, B., Hillier, M., Wendl, M., Green, P., Base-calling of automated sequencer traces using Phred. I. Accuracy assessment (1998) Genome Res., 8, pp. 175-185 
504 |a Frantz, C., Ebel, C., Paulus, F., Imbault, P., Characterization of trans-splicing in Euglenoids (2000) Curr. Genet., 37 (6), pp. 349-355 
504 |a Gajdosova, J., Reichrtova, E., Different growth response of Euglena gracilis to Hg, Cd, Cr and Ni compounds (1996) Anal. Bioanal. Chem., 354 (5-6), pp. 641-642 
504 |a Gibbs, S.P., The chloroplast of Euglena may have evolved from symbiotic green algae (1978) Can. J. Bot., 56, pp. 2883-2889 
504 |a Greenwood, S., Gray, M., Processing of precursor rRNA in Euglena gracilis: identification of intermediates in the pathway to a highly fragmented large subunit rRNA (1998) Biochim. Biophys. Acta, 1443, pp. 128-138 
504 |a Guerrieri, F., Micelli, S., Massagli, C., Gallucci, E., Papa, S., Interaction of the aminoglycoside antibiotic dihydrostreptomycin with the H+-ATPase of mitochondria (1984) Biochem. Pharmacol., 33 (15), pp. 2505-2510 
504 |a Hannaert, V., Plant-like traits associated with metabolism of Trypanosoma parasite (2003) Proc. Natl. Acad. Sci. U. S. A., 100 (3), pp. 1067-1071 
504 |a Henze, K., Badr, A., Wettern, M., Cerff, R., Martin, W., A nuclear gene of eubacterial origin in Euglena gracilis reflects cryptic endosymbioses during protist evolution (1995) Proc. Natl. Acad. Sci. U. S. A., 92, pp. 9122-9126 
504 |a Kucharski, R., Maleszka, R., Evaluation of differential gene expression during behavioral development in the honeybee using microarrays and Northern blots (2002) Genome Biol., 3 (2). , (research 0007, 1-0007, 9) 
504 |a Leander, B., Did trypanosomatid parasites have photosynthetic ancestors? (2004) Trends Microbiol., 12 (6), pp. 251-258 
504 |a Linton, E.W., Nudelman, M.A., Conforti, V., Triemer, R.E., A molecular analysis of the euglenophytes using SSU rDNA (2000) J. Phycol., 36, pp. 740-746 
504 |a Manusadzianas, L., Maksimov, G., Darginaviciene, J., Jurkoniene, S., Sadauskas, K., Vitkus, R., Response of the chlorophyte Nitellopsis obtusa to heavy metals at the cellular, cell membrane and enzyme levels (2002) Environ. Toxicol., 17 (3), pp. 275-283 
504 |a Margulis, L., Symbiosis in cell evolution (1993) Microbial Communities in the Archean and Proterozoic Eons, p. 452. , W. Freeman and Company, New York 
504 |a Marin, B., Palm, A., Klingberg, M., Melkonian, M., Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure (2003) Protist, 154, pp. 99-145 
504 |a Maslov, D.A., Yasuhira, S., Simpson, L., Phylogenetic affinities of Diplonema within Euglenozoa as inferred from SSU rRNA gene and partial COI protein sequences (1999) Protist, 150 (1), pp. 33-42 
504 |a McCord, J.M., Fridovich, I., Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein) (1969) J. Biol. Chem., 244 (22), pp. 6049-6055 
504 |a Müllner, A.N., Angler, D.G., Samuel, R., Linton, E.W., Triemer, R.E., Phylogenetic analysis of phagotrophic, phototrophic, and osmotrophic euglenoids by using the nuclear 18S rDNA sequence (2001) Int. J. Syst. Evol. Microbiol., 51, pp. 783-791 
504 |a Nozaki, H., Ohta, N., Matsuzaki, M., Misumi, O., Kuroiwa, T., Phylogeny of plastids based on cladistic analysis of gene loss inferred from complete plastid genome sequences (2003) J. Mol. Evol., 57, pp. 377-382 
504 |a Nudelman, M.A., Rossi, M.S., Conforti, V., Triemer, R.E., Phylogeny of Euglenophyceae based on small subunit rDNA sequences: taxonomic implications (2003) J. Phycol., 39, pp. 226-235 
504 |a Ohlrogge, J.B., Regulation of fatty acid synthesis (1997) Annu. Rev. Plant Physiol. Plant Mol. Biol., 48, pp. 109-136 
504 |a Parkinson, J., Guiliano, D.B., Blaxter, M., Making sense of EST sequences by CLOBBing them (2002) BMC Bioinformatics, 3, p. 31 
504 |a Ramdas, L., Sources of nonlinearity in cDNA microarrays expression measurements (2001) Genome Biol., 2. , (research 0047. 1-0047.7) 
504 |a Rocchetta, I., Ruiz, L.B., Magaz, G., Conforti, V.T., Effects of hexavalent Chromium in two strains of Euglena gracilis (2003) Bull. Environ. Contam. Toxicol., 70 (5), pp. 1045-1051 
504 |a Romano, P., Horton, P., Gray, J.E., The Arabidopsis cyclophilin gene family (2004) Plant Physiol., 134 (4), pp. 1268-1282 
504 |a Rosenberg, A., Light-independent stoichiometry of galactosyl diglyceride and chlorophyll accretion during light-induced chloroplast membrane synthesis in Euglena (1976) Biochem. Biophys. Res. Commun., 73 (4), pp. 972-977 
504 |a Ruiz, L.B., Rocchetta, I., dos Santos Ferreira, V., Conforti, V., Isolation, culture and characterization of a new strain of Euglena gracilis (2004) Phycol. Res., 52, pp. 168-179 
504 |a Russell, A.G., Watanabe, Y., Charette, J.M., Gray, M., Unusual features of fibrillarin cDNA and gene structure in Euglena gracilis: evolutionary conservation of core proteins and structural predictions for methylation-guide box C/D snoRNPs throughout the domain Eucarya (2005) Nucleic Acids Res., 33 (9), pp. 2781-2791 
504 |a Schawalder, S.B., Kabani, M., Howald, I., Choudhury, U., Werner, M., Shore, D., Growth-regulated recruitment of the essential yeast ribosomal protein gene activator Ifh 1 (2004) Nature, 432 (7020), pp. 1058-1061 
504 |a Schiff, J.A., Schwartzbach, S.D., Photocontrol of chloroplast development in Euglena (1982) Physiology, III, pp. 313-352. , The Biology of Euglena, Academic Press 
504 |a Schwartzbach, S.D., Schiff, J., Chloroplast and cytoplasmic ribosomes of Euglena: selective binding of dihydrostreptomycin to chloroplast ribosomes (1974) J. Bacteriol., 120 n1, pp. 334-341 
504 |a Triemer, R.E., Phylogeny of the Euglenales based upon combined SSU and LSU rDNA sequence comparisons and description of Discoplastis Gen. Nov. (Euglenophyta) (2006) J. Phycol., 42 (3), pp. 731-740 
504 |a Yasuhira, S., Simpson, L., Phylogenetic affinity of mitochondria of Euglena gracilis and kinetoplastids using cytochrome oxidase I and hsp60 (1997) J. Mol. Evol., 44 (3), pp. 341-347 
520 3 |a To better understand Euglena gracilis gene expression under different stress conditions (Chromium, Streptomycin or darkness), we undertook a survey of the E. gracilis transcriptome by cDNA sequencing and microarray analysis. First, we constructed a non-normalized cDNA library from the E. gracilis UTEX strain and sequenced a total of 1000 cDNAs. Six hundred and ten of these ESTs were similar to either Plantae or Protistae genes (e-value < e- 10). Second, microarrays were built by spotting all the ESTs onto mirror slides. Microarray expression analysis indicated that 90 out of those 610 ESTs changed their expression level in response to different stress treatments (p < 0.05). In addition, we detected 10 ESTs that changed expression levels irrespective of the tested stress. These may be considered as part of a larger set of stress-related genes in E. gracilis. Finally, we identified 23 unknown ESTs (U-ESTs) following the expression profiles of these putative stress-related genes suggesting that they could be related to the cellular mechanism of stress response. © 2006 Elsevier B.V. All rights reserved.  |l eng 
536 |a Detalles de la financiación: World Health Organization, 1201/OC-AR 05-6802 
536 |a Detalles de la financiación: Howard Hughes Medical Institute 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires, 137, X-624 
536 |a Detalles de la financiación: We thank Mr. Wilson Lew for comments that greatly helped the microarray interpretation and Mr. A. Ghadiri, SymBio Corporation, for the help given during the sequencing of ESTs. We are also indebted to Dr. Hernán Lorenzi, The Institute for Genomic Research, for helpful discussions and critical reading of the manuscript. For the period 2005–2006 MJL is International Professor of a Chaire Internationale de Recherche Blaise Pascal, Fondation Ecole Normale Superieure, Region Ile de France, Paris, France. This work was also supported by (i) World Health Organization, Special Program for Research in Tropical Diseases (TDR), South-South Initiative; (ii) FONCYT-BID 1201/OC-AR 05-6802, SECyT-Buenos Aires, Argentina; (iii) UBACyT grant X-624; (iv) PME n°137, SECyT-Buenos Aires, Argentina. The work of MJL was partially supported by an International Research Scholar grant from the Howard Hughes Medical Institute, Chevy Chase, MD, USA. 
593 |a Laboratorio de Biología Molecular de la Enfermedad de Chagas (LaBMECh) INGEBI, National Research Council (CONICET), Centro de Genómica Aplicada (CeGA), Vuelta de Obligado 2490 2P, 1428 Buenos Aires, Argentina 
593 |a Laboratorio de Biología Comparada, Protistas Departamento de Biodiversidad y Biología Experimental-DBBE (FCEyN), Universidad de Buenos Aires, Argentina 
593 |a University of California Santa Cruz, Ocean Sciences Department, Earth and Marine Sciences Bldg., Santa Cruz, CA 95064, United States 
593 |a SymBio Corporation, 1455 Adams Drive, Menlo Park, CA 94025, United States 
593 |a lnstitut Cochin, D'epartement Maladies Infectieuses, INSERM U567, Paris F-75014, France 
690 1 0 |a CDNA LIBRARY 
690 1 0 |a CHROMIUM 
690 1 0 |a EST 
690 1 0 |a MICROARRAY 
690 1 0 |a STREPTOMYCIN 
690 1 0 |a CHROMIUM 
690 1 0 |a COMPLEMENTARY DNA 
690 1 0 |a STREPTOMYCIN 
690 1 0 |a ARTICLE 
690 1 0 |a DNA MICROARRAY 
690 1 0 |a DNA SEQUENCE 
690 1 0 |a ENVIRONMENTAL STRESS 
690 1 0 |a EUGLENA GRACILIS 
690 1 0 |a EXPRESSED SEQUENCE TAG 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a NONHUMAN 
690 1 0 |a NUCLEOTIDE SEQUENCE 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a ANIMALS 
690 1 0 |a CHROMIUM 
690 1 0 |a DARKNESS 
690 1 0 |a DNA, ALGAL 
690 1 0 |a DNA, COMPLEMENTARY 
690 1 0 |a DNA, PROTOZOAN 
690 1 0 |a EUGLENA GRACILIS 
690 1 0 |a EXPRESSED SEQUENCE TAGS 
690 1 0 |a GENE EXPRESSION PROFILING 
690 1 0 |a GENE EXPRESSION REGULATION 
690 1 0 |a GENE LIBRARY 
690 1 0 |a GENES, PROTOZOAN 
690 1 0 |a STREPTOMYCIN 
690 1 0 |a EUGLENA GRACILIS 
690 1 0 |a PLANTAE 
700 1 |a Rocchetta, I. 
700 1 |a Conforti, V. 
700 1 |a Bench, S. 
700 1 |a Feldman, R. 
700 1 |a Levin, M.J. 
773 0 |d 2007  |g v. 389  |h pp. 136-145  |k n. 2  |p Gene  |x 03781119  |w (AR-BaUEN)CENRE-4803  |t Gene 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33846841175&doi=10.1016%2fj.gene.2006.10.023&partnerID=40&md5=aa3bdf0fd4a6cafaeac4c1d93de8ad03  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.gene.2006.10.023  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03781119_v389_n2_p136_dosSantosFerreira  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03781119_v389_n2_p136_dosSantosFerreira  |y Registro en la Biblioteca Digital 
961 |a paper_03781119_v389_n2_p136_dosSantosFerreira  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 67622