Influence of the genesis on the structural and hyperfine properties of Cr-substituted hematites

Several series of Cr-substituted hematites with Cr:Fe molar ratio up to 0.112 were prepared by forced hydrolysis of Fe3+ solutions and by thermal dehydroxylation of Cr substituted goethites. Powder X-ray diffraction was used in order to assess the structural characteristics of the whole series. Riet...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Sileo, E.E
Otros Autores: Daroca, D.P, Barrero, C.A, Larralde, A.L, Giberti, M.S, Saragovi, Celia
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2007
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14866caa a22012257a 4500
001 PAPER-6668
003 AR-BaUEN
005 20251013101514.0
008 190411s2007 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33847054719 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Sileo, E.E. 
245 1 0 |a Influence of the genesis on the structural and hyperfine properties of Cr-substituted hematites 
260 |c 2007 
270 1 0 |m Sileo, E.E.; INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Pabellon II, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina; email: sileo@qi.fcen.uba.ar 
504 |a Alvarez, M., Sileo, E.E., Rueda, E.H., Effect of Mn(II) incorporation on the transformation of ferrihidrite to goethite (2005) Chem. Geol., 216, pp. 80-97 
504 |a Alvarez, M., Rueda, E.H., Sileo, E.E., Structural characterization and chemical reactivity of synthetic Mn-goethites and hematites (2006) Chem. Geol., 231, pp. 288-299 
504 |a Artman, J.O., Murphy, J.C., Foner, S., Magnetic anisotropy in antiferromagnetic corundum-type sesquioxides (1965) Phys. Rev., 138, pp. A912-A917 
504 |a Baes, C.F., Mesmer, R.E., (1976) The Hydrolysis of Cations, , Wiley and Sons, New York 
504 |a Bando, Y., Kiyama, M., Yamamoto, N., Takada, T., Shinjo, T., Takaki, H., The magnetic properties of α-Fe2O3 fine particles (1965) J. Phys. Soc. Jpn., 20, p. 2086 
504 |a Blake, R.L., Hessevick, R.E., Zoltai, T., Finger, L.W., Refinement of the hematite structure (1966) Am. Mineral., 51, pp. 125-129 
504 |a Blesa, M.A., Matijevic, E., Phase transformation of iron oxides, oxyhydroxides, and hydrous oxides in aqueous media (1989) Adv. Colloid Interface Sci., 29, pp. 173-221 
504 |a Brand, R.A., (1989) NORMOS Program, IFF der KFA, Juelich, Germany 
504 |a Brown, G., (1980) Associated Minerals, in Crystal Structures of Clay Minerals and their X-ray Identification, , Brindley G.W., and Brown G. (Eds), Mineralogical Society, London 360 pp 
504 |a Catti, M., Valerio, G., Dovesi, R., Theoretical study of electronic, magnetic and structural properties of α-Fe2O3 (hematite) (1995) Phys. Rev., B, 51, pp. 7441-7450 
504 |a Cornell, R.M., Schwertmann, U., (1996) The Iron Oxides. Structure, Properties, Reactions, Occurrence and Uses, , VCH, Weinheim Federal Republic of Germany 
504 |a Cudennec, Y., Lecerf, A., Topotactic transformation of goethite and lepidocrocite into hematite and maghemite (2005) Solid State Sci., 5, pp. 520-529 
504 |a Dang, M.Z., Rancourt, D.G., Dutrizac, J.E., Lamarche, G., Provencher, R., Interplay of surface conditions, particle size, stoichiometry, cell parameters, and magnetism in synthetic hematite-like materials (1998) Hyperfine Interact., 117, pp. 271-319 
504 |a De Grave, E., Vanderberghe, R.E., Mössbauer effect study of the spin structure in natural hematites (1990) Phys. Chem. Miner., 15, pp. 344-352 
504 |a De Grave, E., Bowen, L.H., Weed, S.B., Mössbauer study of aluminum-substituted hematites (1982) J. Magn. Magn. Mater., 27, pp. 98-108 
504 |a Derie, R., Ghodsi, M., Calvo-Roche, C., DTA study of the dehydration of synthetic goethite α-FeOOH (1976) J. Therm. Anal., 9, pp. 435-440 
504 |a Dollase, W.A., Corrections of intensities for preferred orientations in powder diffractometry: applications of the March Model (1986) J. Appl. Crystallogr., 19, pp. 267-272 
504 |a Domingo Pascual, C., Rodríguez Clemente, R., Blesa, M.A., Morphological properties of α-FeOOH, γ-FeOOH and Fe3O4 obtained by oxidation of aqueous Fe(II) solutions (1994) J. Colloid Interface Sci., 165, pp. 244-252 
504 |a Faust, S.D., Aly, O.S., (1981) Chemistry of Natural Waters, , Butterworth, Massachusetts 
504 |a Fey, M.B., Dixon, J.B., Synthesis and properties of poorly crystalline hydrated aluminous goethites (1981) Clays Clay Miner., 29, pp. 91-100 
504 |a Fitzpatrick, R.W., Schwertmann, U., Al-substituted goethite - an indicator of pedogenic and other weathering environment in South Africa (1982) Geoderma, 27, pp. 335-347 
504 |a Goñi-Elizalde, S., García-Clavel, M.E., Thermal behavior in air of iron oxyhydroxides obtained from the method of homogeneous precipitation: Part I. Goethite samples of varying crystallinity (1988) Thermochim. Acta, 124, pp. 359-369 
504 |a Grygar, T., Bezdièka, P., Dedeèek, J., Petrovský, E., Schneeweiss, O., Fe2O3-Cr2O3 system revised (2003) Ceram.-Silik., 47, pp. 32-39 
504 |a Jonas, K., Solynar, K., Preparation, X-ray derivatographic and infrared study of aluminium-substituted goethites (1970) Acta Chim. Acad. Sci. Hung., 66, pp. 383-394 
504 |a Kittel, C., (1996) Introduction to Solid State Physics. Seventh ed, , John Wiley and Sons Inc., New York 
504 |a Klissurski, D.G., Bluskov, V.N., A Mössbauer study of the thermal decomposition of highly disperse α-FeOOH (1980) Mater. Chem., 5, pp. 67-71 
504 |a Larson, A.C., Von Dreele, R.B., (1994) General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR, vol. 86-748 
504 |a Manceau, A., Gorshkov, A.I., Drits, V.A., Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides: Part I. Information from XANES spectroscopy and electron and X-ray diffraction (1992) Am. Mineral., 77, pp. 1133-1143 
504 |a Manceau, A., Gorshkov, A.I., Drits, V.A., Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides: Part II. Information from EXAFS spectroscopy (1992) Am. Mineral., 77, pp. 1144-1157 
504 |a Milton, C., Appleman, D.E., Appleman, M.H., Chao, E.C.T., Guttita, F., Dinnin, J.D., Dwornik, E.J., Rose Jr., H.J., Merumite, a complex assemblage of chromium minerals from Guyana (1976) Geol. Surv. Prof. Pap., 887 
504 |a Moore, J.W., Ramamoorthy, S., Chromium (1984) Heavy Metals in Natural Waters, pp. 58-76. , De Santo R.S. (Ed), Springer, New York 
504 |a Morrish, A.H., (1994) Canted Antiferromagnetism: Hematite, , World Scientific Publishing Company, Singapore 
504 |a Rietveld, H.M., A profile refinement method for nuclear and magnetic structures (1969) J. Appl. Crystallogr., 2, pp. 65-71 
504 |a Ruan, H.D., Gilkes, R.J., Dehydroxylation of aluminous goethite: unit cell dimensions, crystal size and surface area (1995) Clays Clay Miner., 43 (2), pp. 196-211 
504 |a Ruan, H.D., Gilkes, R.J., Kinetics of thermal dehydroxylation of aluminous goethite (1996) J. Therm. Anal., 46, pp. 1223-1238 
504 |a Ruan, H.D., Frost, R.L., Kloprogge, J.T., The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite (2001) Spectrochim. Acta, Part A, 57, pp. 2575-2586 
504 |a Sawada, H., Residual electron density of chromium sesquioxide by crystal structure and scattering factor refinement (1994) Mater. Res. Bull., 29, pp. 239-245 
504 |a Scheinost, A.C., Stanjek, H., Schulze, D.G., Gasser, U., Sparks, D.L., Structural environment and oxidation state of Mn in goethite-groutite solid-solutions (2001) Am. Mineral., 86, pp. 139-146 
504 |a Schulze, D.G., The influence of aluminum on iron oxides. VIII: unit-cell dimensions of Al-substituted goethites and estimation of Al from them (1984) Clays Clay Miner., 32, pp. 36-44 
504 |a Schwertmann, U., Cornell, R.M., (1991) Iron Oxides in the Laboratory, , VCH, Weinheim Chapter 10 
504 |a Schwertmann, U., Taylor, R.M., Iron Oxides (1989) Minerals in Soils Environments, pp. 379-490. , Dixon J.B., and Weed S.B. (Eds), Soil Science Society of America, Madison, Wisconsin, USA 
504 |a Schwertmann, U., Gasser, U., Sticher, H., Chromium-for-iron substitution in synthetic goethites (1989) Geochim. Cosmochim. Acta, 53, pp. 1293-1297 
504 |a Sileo, E.E., Alvarez, M., Rueda, E.H., Structural studies on the manganese for iron substitution in the goethite-jacobsite system (2001) Int. J. Inorg. Mater., 3, pp. 271-279 
504 |a Sileo, E.E., Ramos, A.Y., Magaz, G.E., Blesa, M.A., Long-range vs. short-range ordering in synthetic Cr-substituted goethites (2004) Geochim. Cosmochim. Acta, 68 (14), pp. 3053-3063 
504 |a Singh, B.S., Gilkes, R.J., Properties and distribution of iron oxides and their association with minor elements in the soils of south-western Australia (1992) J. Soil Sci., 43, pp. 77-98 
504 |a Singh, B.S., Sherman, D.M., Gilkes, R.J., Wells, M., Mosselmans, J.F.W., Structural chemistry of Fe, Mn, and Ni synthetic hematites as determined by extended R-ray absorption fine structure spectroscopy (2000) Clays Clay Miner., 48, pp. 521-527 
504 |a Singh, B.S., Sherman, D.M., Gilkes, R.J., Wells, M., Mosselmans, J.F.W., Incorporation of Cr, Mn and Ni into goethite (α-FeOOH): mechanism from extended X-ray absorption fine structure spectroscopy (2002) Clay Miner., 37, pp. 639-649 
504 |a Stanjek, H., Schwertmann, U., The influence of aluminum on iron oxides. Part XVI: hydroxyl and aluminum substitution in synthetic hematites (1992) Clays Clay Miner., 40, pp. 347-354 
504 |a Stephens, P.W., Phenomenological model of anisotropic broadening in powder diffraction (1999) J. Appl. Crystallogr., 32, pp. 281-289 
504 |a Stiers, W., Schwertmann, U., Evidence for manganese substitution in synthetic goethite (1985) Geochim. Cosmochim. Acta, 49, pp. 1909-1911 
504 |a Sváb, E., Krén, E., Neutron diffraction study of substituted hematite (1979) J. Magn. Magn. Mater., 14, pp. 184-186 
504 |a Thompson, P., Cox, D.E., Hastings, J.B., Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3 (1987) J. Appl. Crystallogr., 20, pp. 79-83 
504 |a Trolard, F., Bourrie, G., Jeanroy, E., Herbillon, A.J., Martin, H., Trace metals in natural iron oxides from laterites: a study using selective kinetic extraction (1995) Geochim. Cosmochim. Acta, 59, pp. 1285-1297 
504 |a Vandenberghe, R.E., Verbeeck, A.E., DeGrave, E., Stiers, W., 57Fe Mössbauer effect study of Mn-substituted goethite and hematite (1986) Hyperfine Interact., 29, pp. 1157-1160 
504 |a Waychunas, G.A., Oxides Minerals (1991) Reviews in Mineralogy, 25. , Lindsley D.H. (Ed), The Mineralogical Society of America, Michigan 
504 |a Wells, M.A., Gilkes, R.J., Fitzpatrick, R.W., Properties and acid dissolution of metal-substituted hematites (2001) Clays Clay Miner., 49, pp. 60-72 
504 |a Wolska, E., Schwertmann, U., Selective X-ray Line broadening in the goethite-derived hematite phase (1989) Phys. Status Solidi, A Appl. Res., 114, pp. K11 
506 |2 openaire  |e Política editorial 
520 3 |a Several series of Cr-substituted hematites with Cr:Fe molar ratio up to 0.112 were prepared by forced hydrolysis of Fe3+ solutions and by thermal dehydroxylation of Cr substituted goethites. Powder X-ray diffraction was used in order to assess the structural characteristics of the whole series. Rietveld refinement of XRD data for samples obtained by forced hydrolysis indicated that the incorporation of Cr causes anisotropic changes in the a-lattice parameter and stacking faults. In hematite samples obtained from Cr-goethites, the cell-parameters decrease with the increase in Cr-content. In all cases, the particles were multidomainic, with sizes that varied between 0.13 ± 0.02 and 1.07 ± 0.05 μm. The Morin transition was detected in substituted samples with low Cr-content, but it was no longer present in samples containing μCr ≥ 4.3 ± 0.2 (μCr = 100 × [Cr] / [Cr] + [Fe] mol mol- 1). Mössbauer spectroscopy suggested that the AF phase of Cr-hematites obtained by forced hydrolysis of Fe(III) salts, did not present parallel spin alignment along the [111] direction. These solids presented an unusually low value for TM which was ascribed to the interplay of anisotropic lattice changes, small grain sizes, metal vacancy sites and structurally bound water. All samples presented spin orientation in the (111) basal plane in the WF phase. Néel temperature variation was also explained by the concomitant contributions coming from Cr-for-Fe substitution and anisotropic lattice variations. © 2006 Elsevier B.V. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires, X800 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: This work has been partially supported by UBACYT (X800) from Universidad de Buenos Aires and CONICET (Argentina). Financial support from COLCIENCIAS (Colombia) through the CIAM program is also acknowledged. The authors also acknowledge Cynthia Ramos for her help with the English grammar. 
593 |a INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Pabellon II, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina 
593 |a Unidad de Actividad Física, Comisión Nacional de Energía Atómica, Avenida Gral. Paz 1499, 1650 San Martín, Argentina 
593 |a Grupo de Estado Sólido, Instituto de Física, Universidad de Antioquía, A.A.1226, Medellin, Colombia 
690 1 0 |a CR-SUBSTITUTED HEMATITES 
690 1 0 |a MEAN COHERENCE PATH DIMENSIONS 
690 1 0 |a MÖSSBAUER SPECTROSCOPY 
690 1 0 |a RIETVELD REFINEMENT 
690 1 0 |a CHROMIUM 
690 1 0 |a GOETHITE 
690 1 0 |a HEMATITE 
690 1 0 |a MOSSBAUER SPECTROSCOPY 
690 1 0 |a RIETVELD ANALYSIS 
690 1 0 |a X-RAY DIFFRACTION 
700 1 |a Daroca, D.P. 
700 1 |a Barrero, C.A. 
700 1 |a Larralde, A.L. 
700 1 |a Giberti, M.S. 
700 1 |a Saragovi, Celia 
773 0 |d 2007  |g v. 238  |h pp. 84-93  |k n. 1-2  |p Chem. Geol.  |x 00092541  |w (AR-BaUEN)CENRE-4154  |t Chemical Geology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33847054719&doi=10.1016%2fj.chemgeo.2006.10.017&partnerID=40&md5=46516a7327e08d77feb4edc4731d8020  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.chemgeo.2006.10.017  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00092541_v238_n1-2_p84_Sileo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00092541_v238_n1-2_p84_Sileo  |y Registro en la Biblioteca Digital 
961 |a paper_00092541_v238_n1-2_p84_Sileo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 67621