Plasmodium falciparum biosynthesizes sulfoglycosphingolipids

Sulfated glycosphingolipids are present on the surface of a variety of cells. They are active participants in adhesion processes in many systems and appear to be involved in the regulation of cell proliferation, differentiation and other developmental cellular events. However, the body of knowledge...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Landoni, M.
Otros Autores: Duschak, V.G, Peres, V.J, Nonami, H., Erra-Balsells, R., Katzin, A.M, Couto, A.S
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2007
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16201caa a22014177a 4500
001 PAPER-6512
003 AR-BaUEN
005 20230518203612.0
008 190411s2007 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-34249984441 
024 7 |2 cas  |a carbon 14, 14762-75-5; glucose, 50-99-7, 84778-64-3; palmitic acid, 57-10-3; 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol; Antimalarials; Carbon Radioisotopes; Glucose, 50-99-7; Morpholines; Palmitic Acid, 57-10-3; sodium sulfate, 7757-82-6; Sphingolipids; Sulfates; Sulfoglycosphingolipids 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a MBIPD 
100 1 |a Landoni, M. 
245 1 0 |a Plasmodium falciparum biosynthesizes sulfoglycosphingolipids 
260 |c 2007 
270 1 0 |m Couto, A.S.; CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Buenos Aires, 1428, Argentina; email: acouto@qo.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Bannister, L., Mitchell, G., The ins, outs and roundabouts of Malaria (2003) Trends Parasitol, 19 (5), pp. 209-213 
504 |a Fidok, D.A., Rosenthal, P.J., Croft, S.L., Brun, R., Nwaka, S., Antimalarial drug discovery: efficacy models for compound screening (2004) Nat Rev, 3, pp. 509-520 
504 |a Mitamura, T., Palacpac, N.M.Q., Lipid metabolism in Plasmodium falciparum-infected erythrocytes: possible new targets for malaria chemotherapy (2003) Microbes Infect, 5, pp. 545-552 
504 |a Azzouz, N., Rauscher, B., Gerold, P., Cesbron-Delaw, M.F., Dubremetz, J.F., Schwarz, R.T., Evidence for de novo sphingolipid biosynthesis in Toxoplasma gondii (2002) Int J Parasitol, 32, pp. 677-684 
504 |a Charron, A.J., Sibley, L.D., Host cells: mobilizable lipid resources for the intracellular parasite Toxoplasma gondii (2002) J Cell Sci, 115, pp. 3049-3059 
504 |a Gardner, M.J., Hall, N., Fung, E., Genome sequence of the human malaria parasite Plasmodium falciparum (2002) Nature, 419, pp. 498-511 
504 |a Vial, H.J., Eldin, P., Tielens, A.G., van Hellemond, J.J., Phospholipids in parasitic protozoa (2003) Mol Biochem Parasitol, 126 (2), pp. 143-154 
504 |a Surolia, N., Surolia, A., Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum (2001) Nature, 7, pp. 167-172 
504 |a Gerold, P., Schwarz, R.T., Biosynthesis of glycosphingolipids de novo by the human malaria parasite Plasmodium falciparum (2001) Mol Biochem Parasitol, 112, pp. 29-37 
504 |a Marechal, E., Azzouz, N., Santos de Macedo, C., Synthesis of clhoroplast galactolipids in Apicomplexan parasites (2002) Eukaryotic Cell, 1, pp. 653-656 
504 |a Couto, A.S., Caffaro, C., Uhrig, M.L., Glycosphingolipids in Plasmodium falciparum. Presence of an active glucosylceramide synthase (2004) Eur J Biochem, 271, pp. 2204-2214 
504 |a Pankova-Kholmyansky, I., Flescher, E., Potential new antimalarial chemotherapeutics based on sphingolipid metabolism (2006) Chemotherapy, 52 (4), pp. 205-209 
504 |a Schauer, R., Wember, M., Howard, R.J., Malaria parasites do not contain or synthesize sialic acids (1984) Hoppe Seylers Z Physiol Chem, 365 (2), pp. 185-194 
504 |a Bosio, A., Bussow, H., Adam, J., Stoffel, W., Galactosphingolipids and axono-glial interaction in myelin of the central nervous system (1998) Cell Tissue Res, 292 (2), pp. 199-210 
504 |a Miura, R., Aspberg, A., Ethell, I.M., The proteoglycan lectin domain binds sulfated cell surface glycolipids and promotes cell adhesion (1999) J Biol Chem, 274 (16), pp. 11431-11438 
504 |a Chou, D.K., Tobet, S.A., Jungalwala, F.B., Restoration of synthesis of sulfoglucuronylglycolipids in cerebellar granule neurons promotes dedifferentiation and neurite outgrowth (1998) J Biol Chem, 273 (14), pp. 8508-8515 
504 |a Kobayashi, T., Honke, K., Kuramitsu, Y., Cell-surface sulfoglycolipids are involved in the attachment of renal-cancer cells to laminin (1994) Int J Cancer, 56 (2), pp. 281-285 
504 |a Laudanna, C., Constantin, G., Baron, P., Sulfatides trigger increase of cytosolic free calcium and enhanced expression of tumor necrosis factor-alpha and interleukin-8 mRNA in human neutrophils (1994) J Biol Chem, 69 (6), pp. 4021-4026 
504 |a Kunemund, V., Jungalwala, F.B., Fischer, G., Chou, D.K., Keilhauer, G., Schachner, M., The L2/HNK-1 carbohydrate of neural cell adhesion molecules is involved in cell interactions (1988) J Cell Biol, 106 (1), pp. 213-223 
504 |a Roberts, D.D., Ginsburg, V., Sulfated glycolipids and cell adhesion (1988) Arch Biochem Biophys, 267 (2), pp. 405-415 
504 |a Wang, C.H., Liu, J., Lee, S., Hsiao, C., Wu, W., Non-cytotoxic cobra cardiotoxin A5 binds to alpha(v)beta3 integrin and inhibits bone resorption. Identification of cardiotoxins as non-RGD integrin-binding proteins of the Ly-6 family (2006) J Biol Chem, 281, pp. 656-667 
504 |a Udeinya, I.J., Schmidt, J.A., Aikawa, M., Miller, L.H., Green, I., Falciparum-infected erythrocytes specifically bind to cultures human endothelial cells (1981) Science, 213, pp. 555-557 
504 |a Berendt, A.R., Tumer, G.D., Newbold, C.I., Cerebral malaria: the sequestration hypothesis (1994) Parasitol Today, 10 (10), pp. 412-414 
504 |a Udomsangpetch, R., Walhin, B., Carlson, J., Plasmodium falciparum infected erythrocytes form spontaneous erythrocyte rosettes (1989) J Exp Med, 169, pp. 1835-1840 
504 |a MacPherson, G.G., Warrell, M.J., White, N.J., Locareesuwan, S., Warrel, D.A., Human cerebral malaria: a quantitative ultrastructure analysis of parasitized erythrocyte sequestration (1985) Am J Pathol, 119 (3), pp. 385-401 
504 |a Turner, G.D.H., Morrison, H., Jones, M., An immunohistochemical study of the pathology of fatal malaria: evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration (1994) Am J Pathol, 145, pp. 1057-1069 
504 |a Trager, W., Jensen, J.B., Human malaria parasites in continuous culture (1976) Science, 193, pp. 673-675 
504 |a Kimura, E.A., Couto, A.S., Peres, V.J., Casal, O.L., Katzin, A.M., N-Linked glycoproteins are related to schizogony of the intraerythrocytic stage in Plasmodium falciparum (1996) J Biol Chem, 271, pp. 14452-14461 
504 |a Braun-Breton, C., Jendoubi, M., Brunet, E., Perrin, L., Scaife, J., Pereira da Silva, L., In vivo time course of synthesis and processing of major schizont membrane polypeptides in Plasmodium falciparum (1986) Mol Biochem Parasitol, 20, pp. 33-43 
504 |a Uhrig, M.L., Couto, A.S., Colli, W., Lederkremer, R.M., Characterization of inositolphospholipids in Trypanosoma cruzi trypomastigote forms (1996) Biochim Biophys Acta, 1300, pp. 233-239 
504 |a Tadano, K., Ishizuka, I., Matsuo, M., Matsumoto, S., bis-Sulfated gangliotetraosylceramide from rat kidney (1982) J Biol Chem, 257 (22), pp. 13413-13420 
504 |a Nonami, H., Fukui, S., Erra-Balsells, R., β-Carboline alkaloids as matrices for matrix-assisted ultraviolet laser desorption time-of-flight mass spectrometry of proteins and sulfated oligosaccharides: a comparative study using phenylcarbonyl compounds. Carbazoles and classical matrices (1997) J Mass Spectrom, 32, pp. 287-296 
504 |a Nonami, H., Tanaka, K., Fukuyama, Y., Erra-Balsells, R.R., β-Carboline alkaloids as matrices for UV-matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in positive and negative ion modes. Analysis of proteins of high molecular mass and of cyclic and acyclic oligosaccharides (1998) Rapid Commun Mass Spectrom, 12, pp. 285-296 
504 |a Gerold, P., Dieckmann-Schuppert, A., Schwarz, R.T., Glycosylphosphatidylinositols synthesized by asexual erythrocytic stages of the malaria parasite, Plasmodium falciparum. Candidate for plasmodial glycosyl-phosphatidylinositol membrane anchor precursors and pathogenicity factors (1994) J Biol Chem, 269, pp. 2597-2606 
504 |a Gerold, P., Schofield, L., Blackman, M.J., Holder, A.A., Schwarz, R.T., Structural analysis of the glycosyl-phosphatidylinositol membrane anchors of the merozoite surface proteins-1 and -2 of Plasmodium falciparum (1996) Mol Biochem Parasitol, 75, pp. 131-143 
504 |a Gowda, D.C., Gupta, P., Davidson, E.A., Glycosylphosphatidylinositol anchors represent the major carbohydrate modification in proteins of intraerythrocytic stage of Plasmodium falciparum (1997) J Biol Chem, 272, pp. 6428-6439 
504 |a Naik, R.S., Krishnegowda, G., Gowda, D.C., Glucosamine inhibits inositol acylation of the glycosylphosphatidylinositol anchors in intraerythrocytic Plasmodium falciparum (2003) J Biol Chem, 278, pp. 2036-2042 
504 |a Ishizuka, I., Chemistry and functional distribution of sulfoglycolipids (1997) Prog Lipid Res, 36, pp. 245-319 
504 |a Sugiyama, E., Hara, A., Uemura, K., A quantitative analysis of serum sulfatide by matrix-assisted laser desorption ionization time-of-flight mass spectrometry with delayed ion extraction (1999) Anal Biochem, 274 (1), pp. 90-97 
504 |a Pesheva, P., Gloor, S., Schachner, M., Probstmeier, R., Tenascin-R is an intrinsic autocrine factor for oligodendrocyte differentiation and promotes cell adhesion by a sulfatide-mediated mechanism (1997) J Neurosci, 17 (12), pp. 4642-4651 
504 |a Kurosawa, N., Kadomatsu, K., Ikematsu, S., Sakuma, S., Kimura, T., Muramatsu, T., Midkine binds specifically to sulfatide the role of sulfatide in cell attachment to midkine-coated surfaces (2000) Eur J Biochem, 267 (2), pp. 344-351 
504 |a Merten, M., Thiagarajan, P., Role for sulfatides in platelet aggregation (2001) Circulation, 104 (24), pp. 2955-2960 
504 |a Merten, M., Beythien, C., Gutensohn, K., Kuhnl, P., Meinertz, T., Thiagarajan, P., Sulfatides activate platelets through P-selectin and enhance platelet and platelet-leukocyte aggregation (2005) Arterioscler Thromb Vasc Biol, 25 (1), pp. 258-263 
504 |a Shimazawa, M., Kondo, K., Hara, H., Nakashima, M., Umemura, K., Sulfatides, L- and P-selectin ligands, exacerbate the intimal hyperplasia occurring after endothelial injury (2005) Eur J Pharmacol, 520, pp. 118-126 
504 |a Silamut, K., Phu, N.H., Whitty, C., A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain (1999) Am J Pathol, 155, pp. 395-410 
520 3 |a Sulfated glycosphingolipids are present on the surface of a variety of cells. They are active participants in adhesion processes in many systems and appear to be involved in the regulation of cell proliferation, differentiation and other developmental cellular events. However, the body of knowledge about synthesis, structure, and function of glycolipids in parasitic protozoa is very limited so far. In this work, we show by metabolic incorporation of [14C]palmitic acid, [14C]glucose and Na235SO4 that sulfoglycosphingolipids are biosynthesized in the three intraerythrocytic stages of Plasmodium falciparum. After saponification, purification of the labelled acidic components was achieved and two components named SPf1 and SPf2 were characterized. Chemical degradations and TLC analysis pointed out to sulfolipidic structures. Analysis by UV-MALDI-TOF mass spectrometry in the negative ion mode using nor-harmane as matrix showed for SPf2 a structure consisting in a disulfated hexose linked to a 20:1 sphingosine acylated with C18:0 fatty acid. Interestingly, parasite treatment with low concentrations of d,l-threo-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP) caused an arrest on parasite development associated to the inhibition of sulfoglycolipid biosynthesis. Taking into account that sulfoglycolipidic structures are currently involved in adhesion processes, our findings open the possibility to study the participation of this type of structures in the described aggregation phenomena in severe malaria and may contribute to clarify the pathogenesis of the disease. This report shows for the first time the synthesis of sulfoglycolipids in Apicomplexa. © 2007 Elsevier B.V. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq 
536 |a Detalles de la financiación: Ehime University 
536 |a Detalles de la financiación: Fundação de Amparo à Pesquisa do Estado de São Paulo 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, Pict 06-06545 
536 |a Detalles de la financiación: Heiwa Nakajima Foundation, HNF 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: United Graduate School of Agricultural Sciences, Kagoshima University 
536 |a Detalles de la financiación: This work was supported by grants from: UBA; CONICET and Agencia Nacional de Promoción Científica y Tecnológica (Pict 06-06545), Argentina; FAPESP, CNPq, Brazil. ASC, VGD, and RE-B are members of the Research Council CONICET (Argentina) and ML, CONICET fellow. Mass spectrometry was performed as part of the Academic Agreement between RE-B and HN with the facilities of the High Resolution Liquid Chromatography-integrated Mass Spectrometer System Laboratory of the United Graduate School of Agricultural Sciences (Ehime University, Japan) and partially supported by Heiwa Nakajima Foundation. 
593 |a CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Buenos Aires, 1428, Argentina 
593 |a Departamento de Investigación, Instituto Nacional de Parasitología 'Dr Mario Fatala Chaben', ANLIS-Malbrán, Buenos Aires, Argentina 
593 |a Departamento de Parasitología, Instituto de Ciencias Biomédicas, Universidade de São Paulo, São Paulo, Brazil 
593 |a College of Agriculture, Ehime University, Matsuyama CP, 790-8566, Japan 
690 1 0 |a GLYCOCONJUGATES 
690 1 0 |a PLASMODIUM FALCIPARUM 
690 1 0 |a SULFOGLYCOSPHINGOLIPIDS 
690 1 0 |a CARBON 14 
690 1 0 |a GLUCOSE 
690 1 0 |a PALMITIC ACID 
690 1 0 |a SULFATIDE 
690 1 0 |a ARTICLE 
690 1 0 |a BIOSYNTHESIS 
690 1 0 |a LIPOGENESIS 
690 1 0 |a MATRIX ASSISTED LASER DESORPTION IONIZATION TIME OF FLIGHT MASS SPECTROMETRY 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a THIN LAYER CHROMATOGRAPHY 
690 1 0 |a ANIMALS 
690 1 0 |a ANTIMALARIALS 
690 1 0 |a CARBON RADIOISOTOPES 
690 1 0 |a CHROMATOGRAPHY, THIN LAYER 
690 1 0 |a GLUCOSE 
690 1 0 |a MASS SPECTROMETRY 
690 1 0 |a MORPHOLINES 
690 1 0 |a PALMITIC ACID 
690 1 0 |a PLASMODIUM FALCIPARUM 
690 1 0 |a SPHINGOLIPIDS 
690 1 0 |a SULFATES 
690 1 0 |a SULFOGLYCOSPHINGOLIPIDS 
690 1 0 |a APICOMPLEXA 
690 1 0 |a PLASMODIUM FALCIPARUM 
690 1 0 |a PROTOZOA 
650 1 7 |2 spines  |a MALARIA 
700 1 |a Duschak, V.G. 
700 1 |a Peres, V.J. 
700 1 |a Nonami, H. 
700 1 |a Erra-Balsells, R. 
700 1 |a Katzin, A.M. 
700 1 |a Couto, A.S. 
773 0 |d 2007  |g v. 154  |h pp. 22-29  |k n. 1  |p Mol. Biochem. Parasitol.  |x 01666851  |w (AR-BaUEN)CENRE-6136  |t Molecular and Biochemical Parasitology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-34249984441&doi=10.1016%2fj.molbiopara.2007.03.014&partnerID=40&md5=2e8df1fed536e6e298b0d5eb6c6e1524  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.molbiopara.2007.03.014  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01666851_v154_n1_p22_Landoni  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01666851_v154_n1_p22_Landoni  |y Registro en la Biblioteca Digital 
961 |a paper_01666851_v154_n1_p22_Landoni  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 67465