Backreaction in trans-Planckian cosmology: Renormalization, trace anomaly, and self-consistent solutions

We analyze the semiclassical Einstein equations for quantum scalar fields satisfying modified dispersion relations. We first discuss in detail the renormalization procedure based on adiabatic subtraction and dimensional regularization. We show that, contrary to what is expected from power counting a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Nacir, D.L
Otros Autores: Mazzitelli, F.D
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2007
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09608caa a22009257a 4500
001 PAPER-6484
003 AR-BaUEN
005 20230518203610.0
008 190411s2007 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-34547198889 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PRVDA 
100 1 |a Nacir, D.L. 
245 1 0 |a Backreaction in trans-Planckian cosmology: Renormalization, trace anomaly, and self-consistent solutions 
260 |c 2007 
270 1 0 |m Nacir, D.L.; Departamento de Física Juan José Giambiagi, Facultad de Ciencias Exactas Y Naturales, Pabellón I, 1428 Buenos Aires, Argentina; email: dnacir@df.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Brandenberger, R.H., arXiv:hep-ph/9910410;; Brandenberger, R.H., Martin, J., (2001) Mod. Phys. Lett. a, 16, p. 999. , MPLAEQ 0217-7323 10.1142/S0217732301004170 
504 |a Martin, J., Brandenberger, R.H., (2001) Phys. Rev. D, 63, p. 123501. , PRVDAQ 0556-2821 10.1103/PhysRevD.63.123501 
504 |a Niemeyer, J.C., (2001) Phys. Rev. D, 63, p. 123502. , PRVDAQ 0556-2821 10.1103/PhysRevD.63.123502 
504 |a Easther, R., Greene, B.R., Kinney, W.H., Shiu, G., (2003) Phys. Rev. D, 67, p. 063508. , PRVDAQ 0556-2821 10.1103/PhysRevD.67.063508 
504 |a Shiu, G., Wasserman, I., (2002) Phys. Lett. B, 536, p. 1. , PYLBAJ 0370-2693 10.1016/S0370-2693(02)01835-X 
504 |a Easther, R., Greene, B.R., Kinney, W.H., Shiu, G., (2002) Phys. Rev. D, 66, p. 023518. , PRVDAQ 0556-2821 10.1103/PhysRevD.66.023518 
504 |a Kempf, A., Niemeyer, J.C., (2001) Phys. Rev. D, 64, p. 103501. , PRVDAQ 0556-2821 10.1103/PhysRevD.64.103501 
504 |a Hui, L., Kinney, W.H., (2002) Phys. Rev. D, 65, p. 103507. , PRVDAQ 0556-2821 10.1103/PhysRevD.65.103507 
504 |a Shankaranarayanan, S., (2003) Classical Quantum Gravity, 20, p. 75. , CQGRDG 0264-9381 10.1088/0264-9381/20/1/305 
504 |a Goldstein, K., Lowe, D.A., (2003) Phys. Rev. D, 67, p. 063502. , PRVDAQ 0556-2821 10.1103/PhysRevD.67.063502 
504 |a Bozza, V., Giovannini, M., Veneziano, G., J. Cosmol. Astropart. Phys., 2003 (5), p. 001. , 1475-7516 10.1088/1475-7516/2003/05/001 
504 |a Alberghi, G.L., Casadio, R., Tronconi, A., (2004) Phys. Lett. B, 579, p. 1. , PYLBAJ 0370-2693 10.1016/j.physletb.2003.11.004 
504 |a Danielsson, U.H., (2002) Phys. Rev. D, 66, p. 023511. , PRVDAQ 0556-2821 10.1103/PhysRevD.66.023511 
504 |a Danielsson, U.H., J. High Energy Phys., 2002 (7), p. 040. , JHEPFG 1029-8479 10.1088/1126-6708/2002/07/040 
504 |a Burgess, C.P., Cline, J.M., Lemieux, F., Holman, R., J. High Energy Phys., 2003 (2), p. 048. , JHEPFG 1029-8479 10.1088/1126-6708/2003/02/048 
504 |a Collins, H., Martin, M.R., (2004) Phys. Rev. D, 70, p. 084021. , PRVDAQ 0556-2821 10.1103/PhysRevD.70.084021 
504 |a Easther, R., Kinney, W.H., Peiris, H., J. Cosmol. Astropart. Phys., 2005 (5), p. 009. , 1475-7516 10.1088/1475-7516/2005/05/009 
504 |a Gambini, R., Pullin, J., (1999) Phys. Rev. D, 59, p. 124021. , PRVDAQ 0556-2821 10.1103/PhysRevD.59.124021 
504 |a Alfaro, J., Morales-Tecotl, H.A., Urrutia, L.F., (2000) Phys. Rev. Lett., 84, p. 2318. , PRLTAO 0031-9007 10.1103/PhysRevLett.84.2318 
504 |a Dalvit, D.A.R., Mazzitelli, F.D., Molina-París, C., (2001) Phys. Rev. D, 63, p. 084023. , PRVDAQ 0556-2821 10.1103/PhysRevD.63.084023 
504 |a Birrell, N.D., Davies, P.C.W., (1982) Quantum Fields in Curved Space, , Cambridge University Press, Cambridge, England 
504 |a Wald, R.M., (1994) Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, , University of Chicago, Chicago 
504 |a Fulling, S.M., (1989) Aspects of Quantum Field Theory in Curved Spacetime, , Cambridge University Press, Cambridge, England 
504 |a Zeldovich, Ya.B., Starobinsky, A.A., (1972) Sov. Phys. JETP, 34, p. 1159. , SPHJAR 0038-5646 
504 |a Parker, L., Fulling, S.A., (1974) Phys. Rev. D, 9, p. 341. , PRVDAQ 0556-2821 10.1103/PhysRevD.9.341 
504 |a Fulling, S.A., Parker, L., (1974) Ann. Phys. (N.Y.), 87, p. 176. , APNYA6 0003-4916 10.1016/0003-4916(74)90451-5 
504 |a Fulling, S.A., Parker, L., Hu, B.L., (1974) Phys. Rev. D, 10, p. 3905. , PRVDAQ 0556-2821 10.1103/PhysRevD.10.3905 
504 |a Bunch, T.S., (1980) J. Phys. a, 13, p. 1297. , JPHAC5 0305-4470 10.1088/0305-4470/13/4/022 
504 |a Lemoine, M., Lubo, M., Martin, J., Uzan, J.P., (2001) Phys. Rev. D, 65, p. 023510. , PRVDAQ 0556-2821 10.1103/PhysRevD.65.023510 
504 |a Brandenberger, R.H., Martin, J., (2005) Phys. Rev. D, 71, p. 023504. , PRVDAQ 0556-2821 10.1103/PhysRevD.71.023504 
504 |a López Nacir, D., Mazzitelli, F.D., Simeone, C., (2005) Phys. Rev. D, 72, p. 124013. , PRVDAQ 0556-2821 10.1103/PhysRevD.72.124013 
504 |a López Nacir, D., Mazzitelli, F.D., Simeone, C., (2007) J. Phys. a, 40, p. 6895. , JPHAC5 0305-4470 10.1088/1751-8113/40/25/S36 
504 |a Schalm, K., Shiu, G., Van Der Schaar, J.P., J. High Energy Phys., 2004 (4), p. 076. , JHEPFG 1029-8479 10.1088/1126-6708/2004/04/076 
504 |a Collins, H., Holman, R., (2005) Phys. Rev. D, 71, p. 085009. , PRVDAQ 0556-2821 10.1103/PhysRevD.71.085009 
504 |a Porrati, M., (2004) Phys. Lett. B, 596, p. 306. , PYLBAJ 0370-2693 10.1016/j.physletb.2004.06.090 
504 |a Collins, H., Holman, R., (2005) Phys. Rev. D, 71, p. 085009. , PRVDAQ 0556-2821 10.1103/PhysRevD.71.085009 
504 |a Collins, H., Holman, R., (2006) Phys. Rev. D, 74, p. 045009. , PRVDAQ 0556-2821 10.1103/PhysRevD.74.045009 
504 |a Collins, H., Holman, R., arXiv:hep-th/0609002; Misner, C.W., Thorne, K.S., Wheeler, J.A., (1973) Gravitation, , Freeman, San Francisco 
504 |a In Ref. there is a wrong sign in the last term of Eq. (18); Collins, J., (1984) Renormalization, , Cambridge University Press, Cambridge, England 
504 |a There is a typo in Eq. (17) of Ref; Gradshteyn, I.S., Ryzhik, I.M., (1994) Table of Integrals, Series and Products, , Academic, New York 
504 |a Abramowitz, M., Stegun, I., (1972) Handbook of Mathematical Functions, , Dover, New York 
504 |a Tagirov, E.A., (1973) Ann. Phys. (N.Y.), 76, p. 561. , APNYA6 0003-4916 10.1016/0003-4916(73)90047-X 
504 |a Mottola, E., (1985) Phys. Rev. D, 31, p. 754. , PRVDAQ 0556-2821 10.1103/PhysRevD.31.754 
504 |a Allen, B., (1985) Phys. Rev. D, 32, p. 3136. , PRVDAQ 0556-2821 10.1103/PhysRevD.32.3136 
504 |a Wada, S., Azuma, T., (1983) Phys. Lett. B, 132, p. 313. , PYLBAJ 0370-2693 10.1016/0370-2693(83)90315-5 
504 |a Castagnino, M.A., Harari, D.D., Paz, J.P., (1986) Classical Quantum Gravity, 3, p. 569. , For a similar analysis and other spin fields see CQGRDG 0264-9381 10.1088/0264-9381/3/4/011 
504 |a Sriramkumar, L., Padmanabhan, T., (2005) Phys. Rev. D, 71, p. 103512. , PRVDAQ 0556-2821 10.1103/PhysRevD.71.103512 
504 |a Kaloper, N., Kleban, M., Lawrence, A., Shenker, S., Susskind, L., J. High Energy Phys., 2002 (11), p. 037. , JHEPFG 1029-8479 10.1088/1126-6708/2002/11/037 
504 |a Martin, J., Brandenberger, R.H., (2002) Phys. Rev. D, 65, p. 103514. , PRVDAQ 0556-2821 10.1103/PhysRevD.65.103514 
504 |a Mazzitelli, F.D., Paz, J.P., Castagnino, M.A., (1987) Phys. Rev. D, 36, p. 2994. , PRVDAQ 0556-2821 10.1103/PhysRevD.36.2994 
504 |a Anderson, P.R., Molina-París, C., Mottola, E., (2005) Phys. Rev. D, 72, p. 043515. , PRVDAQ 0556-2821 10.1103/PhysRevD.72.043515 
520 3 |a We analyze the semiclassical Einstein equations for quantum scalar fields satisfying modified dispersion relations. We first discuss in detail the renormalization procedure based on adiabatic subtraction and dimensional regularization. We show that, contrary to what is expected from power counting arguments, in 3+1 dimensions the subtraction involves up to the fourth adiabatic order even for dispersion relations containing higher powers of the momentum. Then we analyze the dependence of the trace of the renormalized energy-momentum tensor with the scale of new physics, and we recover the usual trace anomaly in the appropriate limit. We also find self-consistent de Sitter solutions for dispersion relations that contain up to the fourth power of the momentum. Using this particular example, we also discuss the possibility that the modified dispersion relation can be mimicked at lower energies by an effective initial state in a theory with the usual dispersion relation. © 2007 The American Physical Society.  |l eng 
593 |a Departamento de Física Juan José Giambiagi, Facultad de Ciencias Exactas Y Naturales, Pabellón I, 1428 Buenos Aires, Argentina 
700 1 |a Mazzitelli, F.D. 
773 0 |d 2007  |g v. 76  |k n. 2  |p Phys Rev D Part Fields Gravit Cosmol  |x 15507998  |t Physical Review D - Particles, Fields, Gravitation and Cosmology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-34547198889&doi=10.1103%2fPhysRevD.76.024013&partnerID=40&md5=2832430fe298905ddc090d9a9fea1325  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevD.76.024013  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15507998_v76_n2_p_Nacir  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15507998_v76_n2_p_Nacir  |y Registro en la Biblioteca Digital 
961 |a paper_15507998_v76_n2_p_Nacir  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 67437