Neural Networks and Artificial Intelligence in Thoracic Surgery

Assessment of surgical risk in patients undergoing pulmonary resection is a fundamental goal for thoracic surgeons. Commonly available risk scores do not predict the individual outcome. Data mining and artificial neural networks are artificial intelligence mathematical models that have been used for...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Esteva, H.
Otros Autores: Núñez, T.G, Rodríguez, R.O
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2007
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10511caa a22010817a 4500
001 PAPER-6472
003 AR-BaUEN
005 20230607131851.0
008 190411s2007 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-35448997782 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a TSCHC 
100 1 |a Esteva, H. 
245 1 0 |a Neural Networks and Artificial Intelligence in Thoracic Surgery 
260 |c 2007 
270 1 0 |m Esteva, H.; Division of Thoracic Surgery, Hospital de Clínicas, Universidad de Buenos Aires, Av. San Martín 1039, (1661) Bella Vista. Provincia de Buenos Aires, Argentina; email: hesteva@intramed.net.ar 
506 |2 openaire  |e Política editorial 
504 |a Torrington, K.G., Henderson, C.J., Perioperative respiratory therapy (PORT). A program of perioperative risk assessment and individualized postoperative care (1988) Chest, 95, pp. 947-951 
504 |a Goldman, L., Caldera, D.L., Nussbaum, M., Multifactorial index of cardiac risk in noncardiac surgical procedures (1977) N Engl J Med, 297, pp. 845-850 
504 |a Esteva, H., Luna, C.M., Loterzo, A., Predictive capacity of risk indices in pulmonary resections (1995) South Am J Thoracic Surg, 1, pp. 11-14 
504 |a Vollmer, R.T., Multivariate statistical analysis for pathologists. Part I: the logistic model (1996) Am J Clin Pathol, 105, pp. 115-126 
504 |a Bellotti, M., Elsner, B., Paes De Lima, A., Neural networks as a prognostic tool for patients with non-small cell carcinoma of the lung (1997) Mod Pathol, 10, pp. 1221-1227 
504 |a Clancey, W.J., Shortliffe, E.H., (1984) Readings in medical artificial intelligence-The first decade, , Addison- Wesley, Reading (MA) 
504 |a Mc Culloch, W.S., Pitts, W., A logical calculus of the ideas imminent in nervous activity (1943) Bull Math Biophys, 5, pp. 115-133 
504 |a Coiera, E., (2003) Guide to health informatics. 2nd edition. part 8 capt 25, , Hodder Arnold Publication, Sydney 
504 |a An, C.S., Petrovic, L.M., Reyter, I., The application of image analysis and neural network technology to the study of large-cell liver-cell dysplasia and hepatocellular carcinoma (1997) Hepatology, 26, pp. 1224-1231 
504 |a Marchevsky, A.M., Patel, S., Wiley, K.J., Reasoning with uncertainty in Pathology: artificial neural networks and logistic regression as tools for prediction of survival in Stage I and II non-small cell lung cancer patients (1998) Mod Pathol, 11, pp. 618-625 
504 |a Mango, L.J., Computer-assisted cervical cancer screening using neural networks (1994) Cancer Lett, 77, pp. 155-162 
504 |a Rosenthal, D.L., Acosta, D., Peters, R.K., Computer-assisted rescreening of clinically important false negative cervical smears using the PAPNET Testing System (1996) Acta Cytol, 40, pp. 120-126 
504 |a Xu, X.W., Doi, K., Kobayashi, T., Development of an improved CAD scheme for automated detection of lung nodules in digital chest images (1997) Med Phys, 24, pp. 1395-1403 
504 |a Fogel, D.B., Wasson, E.C., Boughton, E.M., Evolving artificial neural networks for screening features from mammograms (1998) Artif Intell Med, 14, pp. 317-326 
504 |a Turton, E.P., Scott, D.J., Delbridge, M., Ruptured abdominal aortic aneurysm: a novel method of outcome prediction using neural network technology (2000) Eur J Vasc Endovasc Surg, 19, pp. 184-189 
504 |a Segal, M.E., Goodman, P.H., Goldstein, R., The accuracy of artificial neural networks in predicting long-term outcome after traumatic brain injury (2006) J Head Trauma Rehabil, 21, pp. 298-314 
504 |a Arle, J.E., Perrine, K., Devinsky, O., Neural network analysis of preoperative variables and outcome in epilepsy surgery (1999) J Neurosurg, 90, pp. 998-1004 
504 |a Parmanto, B., Doyle, H.R., Recurrent neural networks for predicting outcomes after liver transplantation: representing temporal sequence of clinical observations (2001) Methods Inf Med, 40, pp. 386-391 
504 |a Lippmann, R.P., Shahian, D.M., Coronary artery by-pass risk prediction using neural networks (1997) Ann Thorac Surg, 63, pp. 1635-1643 
504 |a Fayad, U., Piatetsky-Shapiro, G., Smyth, P., "From data mining to knowledge discovery in databases" (1996) AI Magazine, 17, pp. 37-54 
504 |a Lavrac, N., Data mining in medicine: selected techniques and applications (1999) Artif Intell Med, 16, pp. 3-23 
504 |a Werbos, P., (1974) Beyond regression: new tools for prediction and analysis in the behavioral sciences, , Harvard University Department of Applied Mathematics, Cambridge (MA) 
504 |a Kohonen, T., (1997) Associative memory: a system theoretic approach, , Springer, New York 
504 |a Hopefield, J.J., Neural networks and physical systems with emerging collective computational abilities (1982) Proc Natl Acad Sci U S A, 81, pp. 3088-3092 
504 |a Drew, P.J., Monson, J.R., Artificial neural networks (2000) Surgery, 127, pp. 3-11 
504 |a Cross, S.S., Harrison, R.F., Kennedy, R.L., Introduction to neural networks (1995) Lancet, 346, pp. 1075-1079 
504 |a Esteva, H., Bellotti, M., Marchevsky, A.M., Neural Networks for the estimation of prognosis in lung cancer (2001) Artificial Neural Networks in cancer diagnosis, prognosis and patient management, p. 29. , Naguib R.N.G., and Sherbet G.V. (Eds), CRC Press LLC, Boca Raton 
504 |a Fletcher, J.M., Rice, W.J., Ray, R.M., Linear discriminant function analysis in neuropsychological research: Some uses and abuses (1978) Cortex, 14, pp. 564-565 
504 |a Pass, H.I., Liu, Z., Wali, A., Gene expression profiles predict survival and progression of pleural mesothelioma (2004) Clin Cancer Res, 10, pp. 849-859 
504 |a Poulakis, V., Witzsch, U., de Vries, R., Preoperative neural network using combined magnetic resonance imaging variables, prostate-specific antigen, and Gleason score for predicting prostate cancer biochemical recurrence after radical prostatectomy (2004) Urology, 64, pp. 1165-1170 
504 |a Muers, M.F., Shevlin, P., Brown, J., Prognosis in lung cancer: physicians' opinion compared with outcome and a predictive model (1996) Thorax, 51, pp. 894-902 
504 |a Batuello, J.T., Gamito, E.J., Crawford, E.D., Artificial neural network model for the assessment of lymph node spread in patients with clinically localized prostate cancer (2001) Urology, 57, pp. 481-485 
504 |a Chong, C.F., Li, Y.C., Wang, T.L., Stratification of adverse outcomes by preoperative risk factors in coronary artery bypass graft patients: an artificial neural network prediction model (2003) AMIA Annu Symp Proc, pp. 160-164 
504 |a Buzatu, D.A., Taylor, K.K., Peret, D.C., The determination of cardiac surgical risk using artificial neural networks (2001) J Surg Res, 95, pp. 61-66 
504 |a Lapuerta, P., L'Italien, G.J., Paul, S., Neural network assessment of perioperative cardiac risk in vascular surgery patients (1998) Med Decis Making, 18, pp. 70-75 
504 |a Nilsson, J., Ohlsson, M., Thulin, L., Risk factors identification and mortality prediction in cardiac surgery using artificial neural networks (2006) J Thorac Cardiovasc Surg, 132, pp. 12-19 
504 |a Santos García, G., Varela, G., Novoa, N., Prediction of postoperative morbidity after lung resection using an artificial neural network ensemble (2004) Artif Intell Med, 30, pp. 61-69 
504 |a Esteva, H., Marchevsky, A., Nuñez, T., Neural networks as a prognostic tool of surgical risk in lung resections (2002) Ann Thorac Surg, 73, pp. 1576-1581 
504 |a (2003) Prevención y Manejo de las Complicaciones de la Cirugía Torácica, , Esteva y colaboradores, Editorial EDUCA, Buenos Aires 
504 |a Breinman, L., (1994) Bagging predictors, , Dpt of Statistics, University of California, Berkeley; 
520 3 |a Assessment of surgical risk in patients undergoing pulmonary resection is a fundamental goal for thoracic surgeons. Commonly available risk scores do not predict the individual outcome. Data mining and artificial neural networks are artificial intelligence mathematical models that have been used for estimation of prognosis in different clinical scenarios. When used to assess the surgical risk, they can integrate results from multiple data by predicting the individual outcome for patients rather than assigning them to less precise risk group categories. © 2007 Elsevier Inc. All rights reserved.  |l eng 
593 |a Division of Thoracic Surgery, Hospital de Clínicas, Universidad de Buenos Aires, Av. San Martín 1039, (1661) Bella Vista. Provincia de Buenos Aires, Argentina 
593 |a Department of Computer Science, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellon I, Intendente Guiraldes 2160, Ciudad Univ., 1428 Buenos Aires, Argentina 
690 1 0 |a ARTIFICIAL INTELLIGENCE 
690 1 0 |a ARTIFICIAL NEURAL NETWORK 
690 1 0 |a COMORBIDITY 
690 1 0 |a DATA MINING 
690 1 0 |a LUNG RESECTION 
690 1 0 |a MEDICAL PRACTICE 
690 1 0 |a OUTCOME ASSESSMENT 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROGNOSIS 
690 1 0 |a REVIEW 
690 1 0 |a RISK ASSESSMENT 
690 1 0 |a SCORING SYSTEM 
690 1 0 |a SURGICAL RISK 
690 1 0 |a SURGICAL TECHNIQUE 
690 1 0 |a THORAX SURGERY 
690 1 0 |a TREATMENT PLANNING 
690 1 0 |a ARTIFICIAL INTELLIGENCE 
690 1 0 |a HUMANS 
690 1 0 |a NEURAL NETWORKS (COMPUTER) 
690 1 0 |a SURGERY, COMPUTER-ASSISTED 
690 1 0 |a THORACIC DISEASES 
690 1 0 |a THORACIC SURGICAL PROCEDURES 
690 1 0 |a TREATMENT OUTCOME 
700 1 |a Núñez, T.G. 
700 1 |a Rodríguez, R.O. 
773 0 |d 2007  |g v. 17  |h pp. 359-367  |k n. 3  |p Thorac. Surg. Clin.  |x 15474127  |t Thoracic Surgery Clinics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-35448997782&doi=10.1016%2fj.thorsurg.2007.07.012&partnerID=40&md5=f28c98ea499815596358b0aec1faf601  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.thorsurg.2007.07.012  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15474127_v17_n3_p359_Esteva  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15474127_v17_n3_p359_Esteva  |y Registro en la Biblioteca Digital 
961 |a paper_15474127_v17_n3_p359_Esteva  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 67425