Optical extinction spectroscopy used to characterize metallic nanowires

We present a method for sizing metallic nanowires through the analysis of the extinction spectra of the scattered light when the wires are illuminated alternatively with p- and s-polarization waves. The method is applied to isolated silver nanowires in air or immersed in index matching oil. The diel...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Scaffardi, Lucía Beatriz
Otros Autores: Lester, Marcelo Fabián, Skigin, D., Tocho, J.O
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2007
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09533caa a22010937a 4500
001 PAPER-6450
003 AR-BaUEN
005 20251015084430.0
008 190411s2007 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-34547123332 
024 7 |2 cas  |a silver, 7440-22-4 
030 |a NNOTE 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Scaffardi, Lucía Beatriz 
245 1 0 |a Optical extinction spectroscopy used to characterize metallic nanowires 
260 |c 2007 
270 1 0 |m Scaffardi, L.B.; CIOp (CONICET, CIC), cc 124, 1900 La Plata, Argentina; email: lucias@ciop.unlp.edu.ar 
504 |a García-Vidal, F.J., Pitarke, J.M., Pendry, J.B., Silver-filled carbon nanotubes used as spectroscopic enhancers (1998) Phys. Rev., 58 (11), pp. 6783-6786 
504 |a Gray, S.K., Kupka, T., Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders (2003) Phys. Rev., 68, p. 045415 
504 |a Scaffardi, L.B., Pellegri, N., De Sanctis, O., Tocho, J.O., Sizing gold nanoparticles by optical extinction spectroscopy (2005) Nanotechnology, 16 (1), pp. 158-163 
504 |a Scaffardi, L.B., Tocho, J.O., Size dependence of refractive index of gold nanoparticles (2006) Nanotechnology, 17 (5), pp. 1309-1315 
504 |a Braun, E., Eichen, Y., Sivan, U., Ben-Yoseph, G., DNA-templated assembly and electrode attachment of a conducting silver wire (1998) Nature, 391 (6669), pp. 775-778 
504 |a Weeber, J.C., Dereux, A., Girard, C., Creen, J.R., Goudonnet, J.P., Plasmon polaritons of metallic nanowires for controlling submicron propagation of light (1999) Phys. Rev., 60, pp. 9061-9068 
504 |a Rayleigh, D.W., On the electromagnetic theory of light (1881) Phil. Mag. S.5, 12 (73), pp. 81-101 
504 |a Wait, J.R., Scattering of a plane wave from a circular dielectric cylinder at oblique incidence (1955) Can. J. Phys., 33, pp. 189-195 
504 |a Bohren, C.F., Huffman, D.R., (1998) Absorption and Scattering of Light by Small Particles 
504 |a Lakhtakia, A., Scattering by an infinitely-long bianisotropic cylinder with electrically small, convex cross-section (1991) Opt. Commun., 80 (5-6), pp. 303-306 
504 |a Yeh, C., Mei, K.K., (1980) Light Scattering by Irregularly Shaped Particles 
504 |a Nieto-Vesperinas, M., Dainty, J.C., (1991) Scattering in Volumes and Surfaces 
504 |a Nieto-Vesperinas, M., (1991) Scattering and Diffraction in Physical Optics 
504 |a Madrazo, A., Nieto-Vesperinas, M., Scattering of electromagnetic waves from a cylinder in front of a conducting plane (1995) J. Opt. Soc. Am., 12 (6), pp. 1298-1309 
504 |a Lester, M., Nieto-Vesperinas, M., Optical forces on microparticles in an evanescent laser field (1999) Opt. Lett., 26, pp. 936-938 
504 |a Lester, M., Arias-González, J.R., Nieto-Vesperinas, M., Fundamentals and model of photonic-force microscopy (2001) Opt. Lett., 26 (10), pp. 707-709 
504 |a Tsang, L., Chan, H., Pak, K., Backscattering enhancement of a two-dimensional random rough surface (three dimensional scattering) based on Monte Carlo simulations (1994) J. Opt. Soc. Am., 11 (2), pp. 711-715 
504 |a Tran, P., Celli, V., Maradudin, A.A., Electromagnetic scattering from a two-dimensional, randomly rough, perfectly conducting surface: Iterative methods (1994) J. Opt. Soc. Am., 11 (5), pp. 1686-1689 
504 |a Maradudin, A.A., Michel, T., Mc Gurn, A.R., Mendez, E.R., Enhanced backscattering of light from a random grating (1990) Ann. Phys., 203 (2), pp. 255-307 
504 |a Sánchez-Gil, J.A., Nieto-Vesperinas, M., Light scattering from random rough dielectric surfaces (1991) J. Opt. Soc. Am., 8 (8), pp. 1270-1286 
504 |a Arias-González De La Aleja, J.R., (2002) PhD Thesis 
504 |a Van De Hulst, H.C., (1981) Light Scattering by Small Particles, p. 303 
504 |a Lynch, D.W., Hunter, W.R., Comments on the optical constants of metals and an introduction to the data for several metals (1985) Handbook of Optical Constants of Solids, pp. 275-367 
504 |a Leveque, G., Olson, C.G., Lynch, D.W., Reflectance spectra and dielectric functions for Ag in the region of interband transitions (1983) Phys. Rev., 27 (8), pp. 4654-4660 
504 |a Winsemius, P., Van Kampen, F.F., Lengkeek, H.P., Van Went, C.G., Temperature dependence of the optical properties of Au, Ag and Cu (1976) J. Phys. F: Met. Phys., 6 (8), pp. 1583-1606 
504 |a Kreibig, U., Electronic properties of small silver particles: The optical constants and their temperature dependence (1974) J. Phys. F: Met. Phys., 4 (7), pp. 999-1014 
504 |a Kreibig, U., Von Fragstein, C., The limitation of electron mean free path in small silver particles (1969) Z. Phys., 224 (4), pp. 307-323 
504 |a Granqvist, C.G., Hunderi, O., Optical properties of ultrafine gold particles (1977) Phys. Rev., 16 (8), pp. 3513-3534 
504 |a Oates, T.W.H., Real time spectroscopic ellipsometry of nanoparticles growth (2006) Appl. Phys. Lett., 88 (21), p. 213115 
504 |a Barbic, M., Mock, J.J., Smith, D.R., Schultz, S., Single crystal silver nanowires prepared by the metal amplification method (2002) J. Appl. Phys., 91 (11), pp. 9341-9345 
504 |a Schider, G., Krenn, J.R., Gotschy, W., Lamprecht, B., Ditlbacher, H., Leitner, A., Aussenegg, F.R., Optical properties of Ag and Au nanowires gratings (2001) J. Appl. Phys., 90 (8), pp. 3825-3830 
506 |2 openaire  |e Política editorial 
520 3 |a We present a method for sizing metallic nanowires through the analysis of the extinction spectra of the scattered light when the wires are illuminated alternatively with p- and s-polarization waves. The method is applied to isolated silver nanowires in air or immersed in index matching oil. The dielectric function of silver is affected by the size of the cylinders, and its influence on the extinction spectra near the plasmon resonance or near the dip position is considered. Due to the size of the nanocylinders, it is necessary to include two different permittivities in the electromagnetic model to analyse the behaviour of the material under different polarization incidences. This introduces anisotropy in the system, which comprises isotropic cylinders. The behaviour of the extinction spectra for p-waves allows us to determine the wire radii, taking into account the plasmon peak position for radii larger than 7 nm, or alternatively, by using the contrast between maximum and minimum intensity near the plasmon frequency, for radii lower than 5 nm. For s-waves, although no plasmon peak appears, we can determine the radii by analysing the contrast between the ridge of the spectra near 260-275 nm and the minimum near 320-330 nm for radii larger than 10 nm, or analysing the slope in the spectra over 350 nm, for radii below 10 nm. The present study shows that spectral extinction is a very simple and inexpensive technique that can be useful for characterizing the radius of nanocylinders when electron microscopy (TEM or SEM) is not available. © IOP Publishing Ltd.  |l eng 
593 |a CIOp (CONICET, CIC), cc 124, 1900 La Plata, Argentina 
593 |a Área Departamental de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata, Argentina 
593 |a Instituto de Física Arroyo Seco, Facultad de Cs Exactas, UNICEN, Pinto 399, 7000, Tandil, Argentina 
593 |a CONICET, Rivadavia 1917, Buenos Aires, Argentina 
593 |a Grupo de Electromagnetismo Aplicado, Departamento de Física-FCEyN - UBA, Argentina 
593 |a Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina 
690 1 0 |a ELECTROMAGNETIC MODEL 
690 1 0 |a INDEX MATCHING OIL 
690 1 0 |a OPTICAL EXTINCTION SPECTROSCOPY 
690 1 0 |a PLASMON PEAK POSITION 
690 1 0 |a POLARIZATION INCIDENCES 
690 1 0 |a LIGHT POLARIZATION 
690 1 0 |a LIGHT SCATTERING 
690 1 0 |a PERMITTIVITY 
690 1 0 |a SPECTROSCOPIC ANALYSIS 
690 1 0 |a SURFACE PLASMON RESONANCE 
690 1 0 |a TRANSMISSION ELECTRON MICROSCOPY 
690 1 0 |a NANOWIRES 
690 1 0 |a METALLIC NANOWIRE 
690 1 0 |a NANOWIRE 
690 1 0 |a SILVER 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ANISOTROPY 
690 1 0 |a ARTICLE 
690 1 0 |a ELECTROMAGNETIC FIELD 
690 1 0 |a ILLUMINATION 
690 1 0 |a LIGHT SCATTERING 
690 1 0 |a P WAVE 
690 1 0 |a POLARIZATION 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a SCANNING ELECTRON MICROSCOPY 
690 1 0 |a SPECTROSCOPY 
690 1 0 |a TRANSMISSION ELECTRON MICROSCOPY 
700 1 |a Lester, Marcelo Fabián 
700 1 |a Skigin, D. 
700 1 |a Tocho, J.O. 
773 0 |d 2007  |g v. 18  |k n. 31  |p Nanotechnology  |x 09574484  |t Nanotechnology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-34547123332&doi=10.1088%2f0957-4484%2f18%2f31%2f315402&partnerID=40&md5=3256ff0d4d9d524f800d8440f3016fdc  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1088/0957-4484/18/31/315402  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09574484_v18_n31_p_Scaffardi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09574484_v18_n31_p_Scaffardi  |y Registro en la Biblioteca Digital 
961 |a paper_09574484_v18_n31_p_Scaffardi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 67403