The best Sobolev trace constant in a domain with oscillating boundary

In this paper we study homogenization problems for the best constant for the Sobolev trace embedding W1, p (Ω) {right arrow, hooked} Lq (∂ Ω) in a bounded smooth domain when the boundary is perturbed by adding an oscillation. We find that there exists a critical size of the amplitude of the oscillat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fernández Bonder, J.
Otros Autores: Orive, R., Rossi, J.D
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2007
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06931caa a22007577a 4500
001 PAPER-6446
003 AR-BaUEN
005 20230518203608.0
008 190411s2007 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-34147105548 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a NOAND 
100 1 |a Fernández Bonder, J. 
245 1 4 |a The best Sobolev trace constant in a domain with oscillating boundary 
260 |c 2007 
270 1 0 |m Rossi, J.D.; Instituto de Matemáticas y Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, Madrid, Spain; email: jrossi@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Amirat, Y., Bodart, O., de Maio, U., Gaudiello, A., Asymptotic approximation of the solution of the Laplace equation in a domain with highly oscillating boundary (2004) SIAM J. Math. Anal., 35 (6), pp. 1598-1616 
504 |a Arcoya, D., Diaz, J.I., S-shaped bifurcation branches in a quasilinear multivalued model arising in climatology (1998) J. Differential Equations, 150, pp. 215-225 
504 |a Atkinson, C., El Kalli, K., Some boundary value problems for the Bingham model (1992) J. Non-Newton. Fluid Mech., 41, pp. 339-363 
504 |a Babuska, I., Osborn, J.E., Eigenvalue problems (1991) Handbook of Numerical Analysis, II, pp. 641-787 
504 |a Blanchard, D., Carbone, L., Gaudiello, A., Homogenization of a monotone problem in a domain with oscillating boundary (1999) M2AN Math. Model. Numer. Anal., 33 (5), pp. 1057-1070 
504 |a Biezuner, R.J., Best constants in Sobolev trace inequalities (2003) Nonlinear Anal., 54, pp. 575-589 
504 |a Brizzi, R., Chalot, J.-P., Boundary homogenization and Neumann boundary value problem (1997) Ricerche Mat., 46 (2), pp. 341-387 
504 |a Chechkin, G.A., Friedman, A., Piatnitski, A.L., The boundary value problem in domains with rapidly oscillating boundaries (1999) J. Math. Anal. Appl., 231, pp. 213-234 
504 |a Cherkaev, A., Cherkaeva, E., Optimal design for uncertain loading condition (1999) Ser. Adv. Mat. Appl. Sci., 50, pp. 193-213. , Homogenization, World Sci. Publishing, NJ 
504 |a Cherrier, P., Problèmes de Neumann non linéaires sur les variétés Riemanniennes (1984) J. Funct. Anal., 57, pp. 154-206 
504 |a Esposito, A.C., Donato, P., Gaudiello, A., Picard, C., Homogenization of the p-Laplacian in a domain with oscillating boundary (1997) Comm. Appl. Nonlinear Anal., 4 (4), pp. 1-23 
504 |a Escobar, J.F., Sharp constant in a Sobolev trace inequality (1988) Indiana Univ. Math. J., 37 (3), pp. 687-698 
504 |a Fernández Bonder, J., Lami Dozo, E., Rossi, J.D., Symmetry properties for the extremals of the Sobolev trace embedding (2004) Ann. Inst. H. Poincaré. Anal. Non Linéaire, 21 (6), pp. 795-805 
504 |a Fernández Bonder, J., Rossi, J.D., Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains (2002) Comm. Pure Appl. Anal., 1 (3), pp. 359-378 
504 |a Friedman, A., Hu, B., Liu, Y., A boundary value problem for the Poisson equation with multi-scale oscillating boundary (1997) J. Differential Equations, 137, pp. 54-93 
504 |a Gaudiello, A., Asymptotic behaviour of non-homogeneous Neumann problems in domains with oscillating boundary (1994) Ricerche Mat., 43 (2), pp. 239-292 
504 |a García-Azorero, J., Peral-Alonso, I., Rossi, J.D., A convex-concave problem with a nonlinear boundary condition (2004) J. Differential Equations, 198 (1), pp. 91-128 
504 |a Sánchez-Palencia, E., (1980) Lecture Notes in Physics, 127. , Springer-Verlag, Berlin, New York 
504 |a Steklov, M.W., Sur les problèmes fondamentaux en physique mathématique (1902) Ann. Sci. Ecole Norm. Sup., 19, pp. 455-490 
504 |a Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations (1984) J. Differential Equations, 51, pp. 126-150 
520 3 |a In this paper we study homogenization problems for the best constant for the Sobolev trace embedding W1, p (Ω) {right arrow, hooked} Lq (∂ Ω) in a bounded smooth domain when the boundary is perturbed by adding an oscillation. We find that there exists a critical size of the amplitude of the oscillations for which the limit problem has a weight on the boundary. For sizes larger than critical the best trace constant goes to zero and for sizes smaller than critical it converges to the best constant in the domain without perturbations. © 2006 Elsevier Ltd. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Ministerio de Educación y Cultura, S-0505/ESP/0158 
536 |a Detalles de la financiación: JFB and JDR are supported by UBA X066, Fundacion Antorchas, CONICET and ANPCyT PICT 05009 and 10608. RO is partially supported by grants MTM2005-00715 and MTM2005-05980, MEC (Spain) and S-0505/ESP/0158, CAM (Spain). This work was started while JFB was visiting CSIC in Madrid, Spain. He wants to thank the institution for its hospitality and the facilities provided. 
593 |a Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Pabellon I, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
593 |a Departamento de Matemáticas, Facultad de Ciencias, Universidad Autonoma de Madrid, Crta. Colmenar Viejo km. 15, 28049 Madrid, Spain 
593 |a Instituto de Matemáticas y Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, Madrid, Spain 
690 1 0 |a HOMOGENIZATION 
690 1 0 |a SOBOLEV TRACE EMBEDDING 
690 1 0 |a STEKLOV EIGENVALUES 
690 1 0 |a BOUNDARY CONDITIONS 
690 1 0 |a CONVERGENCE OF NUMERICAL METHODS 
690 1 0 |a EIGENVALUES AND EIGENFUNCTIONS 
690 1 0 |a PERTURBATION TECHNIQUES 
690 1 0 |a PROBLEM SOLVING 
690 1 0 |a HOMOGENIZATION PROBLEMS 
690 1 0 |a SOBOLEV TRACE EMBEDDING 
690 1 0 |a STEKLOV EIGENVALUES 
690 1 0 |a DOMAIN DECOMPOSITION METHODS 
700 1 |a Orive, R. 
700 1 |a Rossi, J.D. 
773 0 |d 2007  |g v. 67  |h pp. 1173-1180  |k n. 4  |p Nonlinear Anal Theory Methods Appl  |x 0362546X  |w (AR-BaUEN)CENRE-254  |t Nonlinear Analysis, Theory, Methods and Applications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-34147105548&doi=10.1016%2fj.na.2006.07.005&partnerID=40&md5=29259338d6d36f62ea78a723517ddaa5  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.na.2006.07.005  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0362546X_v67_n4_p1173_FernandezBonder  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v67_n4_p1173_FernandezBonder  |y Registro en la Biblioteca Digital 
961 |a paper_0362546X_v67_n4_p1173_FernandezBonder  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 67399