The best Sobolev trace constant in a domain with oscillating boundary
In this paper we study homogenization problems for the best constant for the Sobolev trace embedding W1, p (Ω) {right arrow, hooked} Lq (∂ Ω) in a bounded smooth domain when the boundary is perturbed by adding an oscillation. We find that there exists a critical size of the amplitude of the oscillat...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2007
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 06931caa a22007577a 4500 | ||
|---|---|---|---|
| 001 | PAPER-6446 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518203608.0 | ||
| 008 | 190411s2007 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-34147105548 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a NOAND | ||
| 100 | 1 | |a Fernández Bonder, J. | |
| 245 | 1 | 4 | |a The best Sobolev trace constant in a domain with oscillating boundary |
| 260 | |c 2007 | ||
| 270 | 1 | 0 | |m Rossi, J.D.; Instituto de Matemáticas y Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, Madrid, Spain; email: jrossi@dm.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Amirat, Y., Bodart, O., de Maio, U., Gaudiello, A., Asymptotic approximation of the solution of the Laplace equation in a domain with highly oscillating boundary (2004) SIAM J. Math. Anal., 35 (6), pp. 1598-1616 | ||
| 504 | |a Arcoya, D., Diaz, J.I., S-shaped bifurcation branches in a quasilinear multivalued model arising in climatology (1998) J. Differential Equations, 150, pp. 215-225 | ||
| 504 | |a Atkinson, C., El Kalli, K., Some boundary value problems for the Bingham model (1992) J. Non-Newton. Fluid Mech., 41, pp. 339-363 | ||
| 504 | |a Babuska, I., Osborn, J.E., Eigenvalue problems (1991) Handbook of Numerical Analysis, II, pp. 641-787 | ||
| 504 | |a Blanchard, D., Carbone, L., Gaudiello, A., Homogenization of a monotone problem in a domain with oscillating boundary (1999) M2AN Math. Model. Numer. Anal., 33 (5), pp. 1057-1070 | ||
| 504 | |a Biezuner, R.J., Best constants in Sobolev trace inequalities (2003) Nonlinear Anal., 54, pp. 575-589 | ||
| 504 | |a Brizzi, R., Chalot, J.-P., Boundary homogenization and Neumann boundary value problem (1997) Ricerche Mat., 46 (2), pp. 341-387 | ||
| 504 | |a Chechkin, G.A., Friedman, A., Piatnitski, A.L., The boundary value problem in domains with rapidly oscillating boundaries (1999) J. Math. Anal. Appl., 231, pp. 213-234 | ||
| 504 | |a Cherkaev, A., Cherkaeva, E., Optimal design for uncertain loading condition (1999) Ser. Adv. Mat. Appl. Sci., 50, pp. 193-213. , Homogenization, World Sci. Publishing, NJ | ||
| 504 | |a Cherrier, P., Problèmes de Neumann non linéaires sur les variétés Riemanniennes (1984) J. Funct. Anal., 57, pp. 154-206 | ||
| 504 | |a Esposito, A.C., Donato, P., Gaudiello, A., Picard, C., Homogenization of the p-Laplacian in a domain with oscillating boundary (1997) Comm. Appl. Nonlinear Anal., 4 (4), pp. 1-23 | ||
| 504 | |a Escobar, J.F., Sharp constant in a Sobolev trace inequality (1988) Indiana Univ. Math. J., 37 (3), pp. 687-698 | ||
| 504 | |a Fernández Bonder, J., Lami Dozo, E., Rossi, J.D., Symmetry properties for the extremals of the Sobolev trace embedding (2004) Ann. Inst. H. Poincaré. Anal. Non Linéaire, 21 (6), pp. 795-805 | ||
| 504 | |a Fernández Bonder, J., Rossi, J.D., Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains (2002) Comm. Pure Appl. Anal., 1 (3), pp. 359-378 | ||
| 504 | |a Friedman, A., Hu, B., Liu, Y., A boundary value problem for the Poisson equation with multi-scale oscillating boundary (1997) J. Differential Equations, 137, pp. 54-93 | ||
| 504 | |a Gaudiello, A., Asymptotic behaviour of non-homogeneous Neumann problems in domains with oscillating boundary (1994) Ricerche Mat., 43 (2), pp. 239-292 | ||
| 504 | |a García-Azorero, J., Peral-Alonso, I., Rossi, J.D., A convex-concave problem with a nonlinear boundary condition (2004) J. Differential Equations, 198 (1), pp. 91-128 | ||
| 504 | |a Sánchez-Palencia, E., (1980) Lecture Notes in Physics, 127. , Springer-Verlag, Berlin, New York | ||
| 504 | |a Steklov, M.W., Sur les problèmes fondamentaux en physique mathématique (1902) Ann. Sci. Ecole Norm. Sup., 19, pp. 455-490 | ||
| 504 | |a Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations (1984) J. Differential Equations, 51, pp. 126-150 | ||
| 520 | 3 | |a In this paper we study homogenization problems for the best constant for the Sobolev trace embedding W1, p (Ω) {right arrow, hooked} Lq (∂ Ω) in a bounded smooth domain when the boundary is perturbed by adding an oscillation. We find that there exists a critical size of the amplitude of the oscillations for which the limit problem has a weight on the boundary. For sizes larger than critical the best trace constant goes to zero and for sizes smaller than critical it converges to the best constant in the domain without perturbations. © 2006 Elsevier Ltd. All rights reserved. |l eng | |
| 536 | |a Detalles de la financiación: Ministerio de Educación y Cultura, S-0505/ESP/0158 | ||
| 536 | |a Detalles de la financiación: JFB and JDR are supported by UBA X066, Fundacion Antorchas, CONICET and ANPCyT PICT 05009 and 10608. RO is partially supported by grants MTM2005-00715 and MTM2005-05980, MEC (Spain) and S-0505/ESP/0158, CAM (Spain). This work was started while JFB was visiting CSIC in Madrid, Spain. He wants to thank the institution for its hospitality and the facilities provided. | ||
| 593 | |a Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Pabellon I, Ciudad Universitaria, 1428 Buenos Aires, Argentina | ||
| 593 | |a Departamento de Matemáticas, Facultad de Ciencias, Universidad Autonoma de Madrid, Crta. Colmenar Viejo km. 15, 28049 Madrid, Spain | ||
| 593 | |a Instituto de Matemáticas y Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, Madrid, Spain | ||
| 690 | 1 | 0 | |a HOMOGENIZATION |
| 690 | 1 | 0 | |a SOBOLEV TRACE EMBEDDING |
| 690 | 1 | 0 | |a STEKLOV EIGENVALUES |
| 690 | 1 | 0 | |a BOUNDARY CONDITIONS |
| 690 | 1 | 0 | |a CONVERGENCE OF NUMERICAL METHODS |
| 690 | 1 | 0 | |a EIGENVALUES AND EIGENFUNCTIONS |
| 690 | 1 | 0 | |a PERTURBATION TECHNIQUES |
| 690 | 1 | 0 | |a PROBLEM SOLVING |
| 690 | 1 | 0 | |a HOMOGENIZATION PROBLEMS |
| 690 | 1 | 0 | |a SOBOLEV TRACE EMBEDDING |
| 690 | 1 | 0 | |a STEKLOV EIGENVALUES |
| 690 | 1 | 0 | |a DOMAIN DECOMPOSITION METHODS |
| 700 | 1 | |a Orive, R. | |
| 700 | 1 | |a Rossi, J.D. | |
| 773 | 0 | |d 2007 |g v. 67 |h pp. 1173-1180 |k n. 4 |p Nonlinear Anal Theory Methods Appl |x 0362546X |w (AR-BaUEN)CENRE-254 |t Nonlinear Analysis, Theory, Methods and Applications | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-34147105548&doi=10.1016%2fj.na.2006.07.005&partnerID=40&md5=29259338d6d36f62ea78a723517ddaa5 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.na.2006.07.005 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_0362546X_v67_n4_p1173_FernandezBonder |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v67_n4_p1173_FernandezBonder |y Registro en la Biblioteca Digital |
| 961 | |a paper_0362546X_v67_n4_p1173_FernandezBonder |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 963 | |a VARI | ||
| 999 | |c 67399 | ||