Paleogene and Neogene magmatism in the Valle del Cura region: New perspective on the evolution of the Pampean flat slab, San Juan province, Argentina

The Valle del Cura region is characterized by a thick volcanic and volcaniclastic sequence that records the Tertiary arc and backarc magmatic evolution of the Argentine Main Cordillera over the modern Pampean flatslab at 29.5-30°S. During the Eocene, a retroarc basin developed, represented by the Va...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Litvak, V.D
Otros Autores: Poma, S., Kay, S.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2007
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 19380caa a22011897a 4500
001 PAPER-6429
003 AR-BaUEN
005 20230518203607.0
008 190411s2007 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-34548397089 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Litvak, V.D. 
245 1 0 |a Paleogene and Neogene magmatism in the Valle del Cura region: New perspective on the evolution of the Pampean flat slab, San Juan province, Argentina 
260 |c 2007 
270 1 0 |m Litvak, V.D.; Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Ciencias Geológicas-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellon II-, C1428EHA, Argentina; email: vane@gl.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Bissig, T., Clark, A.H., Lee, J.K.W., Heather, K.B., The cenozoic history of volcanism and hydrothermal alteration in the Central Andean flat-slab region: New 40Ar-39Ar constrains from the El Indio-Pascua Au(-Ag, Cu) belt, 29°20-30°30″S (2001) International Geology Review, 43, pp. 312-340 
504 |a Bissig, T., Clark, A.H., Lee, J.K.W., Cerro de Vidrio ryholitic dome: evidence for late Pliocene in the Central Andean flan-slab region, Lama-Veladero district, 29°20′, San Juan Province, Argentina (2002) Journal of South American Earth Science, 15, pp. 571-576 
504 |a Bissig, T., Clark, A.H., Lee, J.K.W., von Quadt, A., Petrogenetic and metallogenetic responses to Miocene slab flattenig: new constrains from the El Indio-Pascua Au-Ag-Cu Belt, Chile/Argentina (2003) Mineralium Deposita, 38, pp. 844-862 
504 |a Charrier, R., Baeza, O., Elgueta, S., Flynn, J.J., Gans, P., Kay, S.M., Muñoz, N., Zurita, E., Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33-36°S. L.) (2002) Journal of South American Earth Sciences, (15), pp. 117-139 
504 |a Gill, J.B., (1981) Orogenic Andesites and Plate Tectonics, , Springer-Verlag, Berlin Heidelberg New York p. 392 
504 |a Drummond, M.S., Defant, M.J., A model for trondjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons (1990) Journal of Geophysical Research, 95, pp. 21503-21521 
504 |a Godoy, E., Yañez, G., Vera, E., Inversion of an Oligocene volcano-tectonic basin and uplift of its superimposed Mioceno magmatic arc in the Chilean Central Andes: first seismic and gravity evidences (1999) Tectonophysics, 306, pp. 217-236 
504 |a Gutscher, M.A., Maury, R., Eissen, J.P., Bourdon, E., Can slab melting be caused by flat subduction? (2000) Geology, 28, pp. 535-538 
504 |a Hickey, R.L., Frey, F.A., Gerlach, D.C., López Escobar, L., Multiple sources for basaltic arc rocks from the Southern Volcanic Zone of the Andes (34-41°S): trace elements and isotopic evidence for contributions from subducted oceanic crust, mantle and continental crust (1986) Journal of Geophysical Research, 91, pp. 5963-5983 
504 |a Hildreth, W., Moorbath, S., Crustal contributions to arc magmatism in the Andes of Central Chile (1988) Contributions to Mineralogy and Petrology, 98, pp. 455-489 
504 |a Irvine, T.N., Baragar, W.R.A., A guide to the chemical classification of the common volcanic rocks (1971) Canadian Journal of Earth Sciences, 8, pp. 523-548 
504 |a Kay, R.W., Geochemical constrains on the origin of Aleutian magmas (1977) Islands arcs, deep sea trenches and back-arcs basins, 1, pp. 229-242. , Talwani M., and Pitman W.C. (Eds), AGU Ewing Ser 
504 |a Kay, R.W., Aleutian magnesian andesite: melts from subducted Pacific ocean crust (1978) Journal of Volcanological and Geothermal Research, 4, pp. 497-522 
504 |a Kay, S.M., Abruzzi, J.M., Magmatic evidence for Neogene lithospheric evolution of the Central Andes "flat slab" between 30°S and 32°S (1996) Tectonophysics, 259, pp. 15-28 
504 |a Kay, S.M., Gordillo, C.E., Pocho volcanic rocks and the melting of depleted continental lithosphere above a shallowly dipping subduction zone in the Central Andes (1994) Contributions to Mineralogy and Petrology, 117, pp. 25-44 
504 |a Kay, S.M., Mpodozis, C., Central Andean ore deposits linked to evolving shallow subduction systems and thickening Crust (2001) GSAToday, 11, pp. 4-9 
504 |a Kay, S.M., Mpodozis, C., Magmatism as a probe to Neogene shalowing of the Nazca plate beneath the modern Chilean flta-slab (2002) Journal of South American Earth Science, 15, pp. 39-57 
504 |a Kay, S.M., Godoy, E., Kurtz, A., Episodic arc migration, crustal thickening, subduction erosion and magmatism in the South-Central Andes (2005) Geology Society of American Bulletin, 117, pp. 67-88 
504 |a Kay, S.M., Ramos, V.A., Márquez, M., Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South America (1993) Journal of Geology, 101, pp. 703-714 
504 |a Kay, S.M., Maksaev, V.A., Moscoso, R., Mpodozis, C., Nasi, C., Probing the evolving Andean lithosphere: Mid-late Tertiary Magmatism in Chile (29°-30°30′S) over the modern zone of subhorizontal subduction (1987) Journal of Geophysical Research, 92, pp. 6173-6189 
504 |a Kay, S.M., Maksaev, V.A., Moscoso, R., Mpodozis, C., Nasi, C., Gordillo, C.E., Tertiary Andean Magmatism in Chile and Argentina between 28°S and 33°S: Correlation of magmatic chemistry with changing Benioff zone (1988) Journal South American Geology Earth Sciences, 1, pp. 21-38 
504 |a Kurtz, A., Kay, S.M., Charrier, R., Farrar, E., Geochronology of Miocene plutons and exhumation history of the El Teniente region, Central Chile (34-35° L.S.) (1997) Revista Geológica de Chile, 24, pp. 75-90 
504 |a Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre, M.J., Le Bas, P.A., Sabine, R., Wooley Zanettin, B., (1989) A classification of igneous rocks and glossary of terms, , Blackwell, Oxford p. 193 
504 |a Limarino, C.O., Fauqué, L.A., Cardó, R., Gagliardo, M.L., Escosteguy, L., La Faja volcánica miocena de la Precordillera septentrional. Revista de la Asociación Geológica Argentina (2002) Revista de la Asociación Geológica Argentina, 57, pp. 289-304 
504 |a Limarino, C.O., Gutiérrez, P.R., Malizia, D., Barreda, V., Page, S., Ostera, H., Linares, E., Edad de las secuencias paleógenas y neógenas de las cordilleras de la Brea y Zancarrón, Valle del Cura, San Juan (1999) Revista de la Asociación Geológica Argentina, 54, pp. 177-181 
504 |a Litvak, V.D., Page, S., Nueva evidencia cronológica en el Valle del Cura, provincia de San Juan (2002) Revista de la Asociación Geológica Argentina, 57, pp. 483-486 
504 |a Litvak, V.D., Poma, S., Estratigrafía y facies volcánicas y volcaniclásticas de la Formación Valle del Cura: magmatismo paleógeno en la Cordillera Frontal de San Juan (2005) Revista de la Asociación Geológica Argentina, 60 (2), pp. 402-416 
504 |a Litvak, V.D., Chernicoff, C.J., Poma, S., Localización de centros eruptivos mediante aeromagnetometría en el sector central del Valle del Cura, San Juan, Argentina: implicancias para la evolución de arco/retroarco Cenozoico (2005) Revista Geológica de Chile, 32, pp. 77-93 
504 |a Litvak, V.D., Kay, S.M., Mpodozis, C., New K/Ar ages on Tertiay volcanic rocks in the Valle del Cura, Pampean flat slab segment, Argentina (2005) Actas XVI Congreso Geológico Argentino, (2), pp. 159-164 
504 |a Litvak, V.D., Poma, S., Limarino, C.O., Volcanismo piroclástico de edad eocena media en el Valle del Cura, provincia de San Juan: nuevos datos geológicos y geocronológicos (2004) Revista de la Asociación Geológica Argentina, 59, pp. 514-517 
504 |a Maksaev, V., Moscoso, R., Mpodozis, C., Nasi, C., Las unidades volcánicas y plutónicas del Cenozoico superior entre la Alta Cordillera del Norte Chico (29°-31 °S), Geología, alteración hidrotermal y mineralización (1984) Revista Geológica de Chile, 21, pp. 11-51 
504 |a Martin, M.W., Clavero, J.R., Mpodozis, C.M., Late Paleozoic to Early Jurassic tectonic development of the high Andean Principal Cordillera, El Indio Region, Chile (29°-30°S) (1999) Journal of South American Earth Sciences, 12, pp. 33-49 
504 |a Pardo Casas, F., Molnar, P., Relative motion of the Nazca (Farallón) and South America plates since Late Cretaceous time (1987) Tectonics, 6, pp. 233-248 
504 |a Pilger, R.H., Plate reconstructions, aseismic ridges, and low angle subduction beneath the Andes (1981) Geological Society of America Bulletin, 92, pp. 448-456 
504 |a Pilger, R.H., Cenozoic plate kinematics, subduction and magmatism: South American Andes (1984) Journal of the Geological Society of London, 141, pp. 793-802 
504 |a Ramos, V.R., Kay, S.M., Singer, B.S., Las adakitas de la Cordillera Patagónica: nuevas evidencias geoquímicas y geocronológicas (2004) Revista de la Asociación Geológica Argentina, 59 (4), pp. 693-706 
504 |a Ramos, V.A., Kay, S.M., Page, R., Munizaga, F., La Ignimbrita Vacas Heladas y el cese del volcanismo en el Valle del Cura, provincia de San Juan (1989) Revista de la Asociación Geológica Argentina, 44, pp. 336-352 
504 |a Ramos, V.A., Page, R., Kay, S.M., Lapido, O., Delpino, D., Geología de la región del volcán Tórtolas, Valle del Cura, provincia de San Juan. Actas 10° Congreso Geológico Argentino y Simposium Circumpacific Phanerozoic Granites (1987) Tucumán, 4, pp. 260-263 
504 |a Richards, J.P., Discussion on "Giant versus small porphyry copper deposits of Cenozopic age in northern Chile: Adakitic versus normal calc-alkaline magmatism" by Oyarzun et al (2002) Mineralium Deposita, 37, pp. 788-790 
504 |a Rollinson, H.R., (1993) Using Geochemical Data: Evaluation, presentation, interpretation, , Longman Scientific & Technical, Longman Group UK Ltd p. 352 
504 |a Stern, C.R., Skewes, M.A., Miocene to present evolution at the northern end of the Andean Southern Volcanic Zone, central Chile (1995) Revista Geológica de Chile, 22, pp. 261-272 
504 |a Skewes, M.A., Arévalo, A., Floody, R., Zuñiga, H., Stern, C.R., The giant El Teniente breccia deposit: hypogene copper distribution and emplacement (2002) Society of Economic Geologists Special Publication, 9, pp. 299-332 
504 |a Vergés, J., Ramos, E., Seward, D., Busquets, P., Colombo, F., Miocene sedimentary and tectonic evolution of the Andean Precordillera at 31°S, Argentina (2001) Journal of South American Earth Sciences, 14 (7), pp. 735-750 
504 |a Yañez, G.A., Ranero, C.R., von Huene, R., Díaz, J., Magnetic anomaly interpretation across the southern central Andes (32-34°): the role of the Juan Fernández Ridge in the late Tertiary evolution of the margin (2001) Journal of Geophysical Research, 106, pp. 6325-6345 
520 3 |a The Valle del Cura region is characterized by a thick volcanic and volcaniclastic sequence that records the Tertiary arc and backarc magmatic evolution of the Argentine Main Cordillera over the modern Pampean flatslab at 29.5-30°S. During the Eocene, a retroarc basin developed, represented by the Valle del Cura Formation synorogenic volcanosedimentary sequence, which includes rhyolites and dacitic tuffs. These silicic volcanic rocks have weak arc chemical signatures and high lithophile element concentrations and are isotopically enriched relative to the late Oligocene-early Miocene volcanic rocks that followed them. Their chemical characteristics fit with eruption through a thin crust. The Valle de Cura Formation was followed by the Oligocene-early Miocene Doña Ana Group volcanic sequence, which erupted at and near the arc front west of the border with Chile. The Doña Ana Group volcanic rocks have calc-alkaline chemical characteristics consistent with parental magmas forming in a mantle wedge and erupting through a normal thickness crust (35 km). Subsequent shallowing of the downgoing Nazca plate caused the volcanic front to migrate eastward. The volcanic sequences of the middle Miocene Cerro de las Tórtolas Formation erupted at this new arc front, essentially at the Argentine border. Two stages are recognized: an older one (16-14 Ma) in which magmas appear to have erupted through a normal thickness crust (30-35 km) and a younger one (13-10 Ma) in which the steeper REE pattern suggests the magmas last equilibrated with higher pressure residual mineral assemblages in a thicker crust. Isotopic ratios in the younger group are consistent with an increase in original crustal components and crust introduced into the mantle source by forearc subduction erosion. A peak in forearc subduction erosion near 12-10 Ma is consistent with when the main part of the Juan Fernandez Ridge began to subduct beneath the region. In addition to late Miocene Tambo Formation dacitic ignimbrites, the younger Cerro de las Tórtolas Formation volcanic rocks erupted at the height of contractional deformation in the Valle del Cura and to the east. The last important volcanic sequence to erupt in the Valle del Cura is the late Miocene Vacas Heladas Ignimbrite, the most isotopically enriched Tertiary magmas in the Valle del Cura that contain the highest proportion of crustal components. Subsequently volcanism ceased in the region in response to shallowing of the subduction zone. © 2007 Elsevier Ltd. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACYT X127 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 25303 
536 |a Detalles de la financiación: This research was supported by grants from the University of Buenos Aires (UBACYT X127) and Agencia Nacional de Promoción Científica y Tecnológica (PICT 25303), with the support of the Servicio Geológico Minero Argentino (SEGEMAR). We thank Cornell University and the Cornell Center for Material Research for support in the making of the chemical analyses. The authors are particularly grateful to Dr. E. Godoy and Dr. I. Petrinovic for their reviews of the manuscript. Appendix A Major and most trace elements analyses were done at Cornell University. All samples were sawed into slabs, and fresh interior sections were chosen for whole-rock analysis. Slabs were broken into 0.25–0.5 cm size in a steel mortar; these pieces were pulverized in an aluminum oxide ceramic shatterbox. Major elements analyses were performed on a JEOL-733 Superprobe electron microprobe on glasses made from rock powders; Li kV accelerating voltage, 15 nA beam current, 40 s count time, and 30 mm beam. Data were reduced using the Bence-Albee program. Typical 2 wt%. Trace elements analyses were carried out by Instrumental Neutron Activation Analysis (INAA) at Cornell University and provided results for La, Ce, Nd, Sm, Eu, Tb, Yb, Lu, Sr, Ba, Cs, U, Th, Hf, Ta, Sc, Cr, Ni, and Co. These analyses were done on approximately 0.5 g of sample powder packed in ultrapure Suprasil kW for 3–4 h. Samples and standards were counted for 4–10 h on an Ortec GeLi detector after 6 and approximately 40 days following irradiation. The INAA precision (2s) based on replicate analysis of basalt PAL is ±2–7% for most elements and between ±8–16% for U, Sr, Nd, and Ni. The detail of used techniques and standards can be found in 2 B 4 O 7 was used as flux in silicic glasses. Analyses correspond to averages of 4–6 spots in WDS mode with a 15 σ precision is ±1–5% at >1 ® quartz tubing. The INAA runs consisted of 11 samples and three internal standards (PAL, WBD, and SIT) irradiated in the TRIGA reactor at Ward Laboratory (Cornell University) at a power level of approximately 400 Kay et al. (1987) . Some trace element analyses were done in Xral Laboratory (Canadá) by inductively coupled plasma mass spectroscopic (ICP-MS), according the standards and procedures of the laboratory. In these cases, Rb, Nb, Y, and Zr elements were also measured for the analyzed rocks. Sr and Nd isotopes were analyzed at Cornell University on a multicollector VG Sector 54 thermal ionization mass spectrometer. For lavas, approximately 250 mg of hand-picked sample chips (<50 mg per chip) were leached in hot 6 N HCl for 30 min and then dissolved in sealed 15 ml Savillex capsules with HF and HNO N and 6 N HCl as eluants. Nd was eluted using organically coated PFTE cation exchange resin and 0.16 N HCl. All ratios were measured by thermal ionization mass spectrometry. Sr and Nd ratios were corrected for mass fractionation assuming = 0.1194 and = 0.7219. The average measured value for the NBS987 Sr standard was = 0.710235 ± 34 (2 = 0.511864 ± 14 (2 ± 12 (2 = 0.512138 ± 20 (2 = −15.15 for the La Jolla standard. 3 acids. Sr and REE were separated using cation exchange columns with AG50W-x12 resin and 2.5 86 Sr/ 88 Sr 146 Nd/ 144 Nd 87 Sr/ 86 Sr σ ), based on 67 analyses. The La Jolla Nd standard was 143 Nd/ 144 Nd σ ) from July 1993 to August 1997, based on 10 analyses, and 0.511817 σ ) from August to November 1990, based on 15 analyses. The Ames Nd standard was 143 Nd/ 144 Nd σ ), based on 10 analyses. The &z.epsiv; Nd values calculated assume &z.epsiv; Nd 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Ciencias Geológicas-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellon II-, C1428EHA, Argentina 
593 |a Department of Earth and Atmospheric Sciences, INSTOC, Cornell University, Ithaca, NY 14853, United States 
690 1 0 |a GEOCHEMISTRY 
690 1 0 |a NEOGENE 
690 1 0 |a NEOGENO 
690 1 0 |a PALEOGENE 
690 1 0 |a PALEOGENO 
690 1 0 |a VALLE DEL CURA 
690 1 0 |a VOLCANISM 
690 1 0 |a VOLCANISMO 
690 1 0 |a BASIN EVOLUTION 
690 1 0 |a CHEMICAL PROPERTY 
690 1 0 |a IGNEOUS GEOCHEMISTRY 
690 1 0 |a MAGMA 
690 1 0 |a MAGMATISM 
690 1 0 |a NEOGENE 
690 1 0 |a PALEOGENE 
690 1 0 |a SUBDUCTION ZONE 
690 1 0 |a VOLCANIC ROCK 
690 1 0 |a VOLCANISM 
690 1 0 |a SIERRAS PAMPEANAS 
690 1 0 |a VALLE DEL CURA 
690 1 0 |a CURA 
650 1 7 |2 spines  |a GEOQUIMICA 
651 4 |a ARGENTINA 
651 4 |a SAN JUAN [ARGENTINA] 
651 4 |a SOUTH AMERICA 
700 1 |a Poma, S. 
700 1 |a Kay, S.M. 
773 0 |d 2007  |g v. 24  |h pp. 117-137  |k n. 2-4  |p J. South Am. Earth Sci.  |x 08959811  |w (AR-BaUEN)CENRE-1080  |t Journal of South American Earth Sciences 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-34548397089&doi=10.1016%2fj.jsames.2007.04.002&partnerID=40&md5=eb31dd6b48f9e32f3cc2171be9bfa402  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jsames.2007.04.002  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_08959811_v24_n2-4_p117_Litvak  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08959811_v24_n2-4_p117_Litvak  |y Registro en la Biblioteca Digital 
961 |a paper_08959811_v24_n2-4_p117_Litvak  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 67382