Molecular transduction mechanisms of cytokine-hormone interactions: Role of gp130 cytokines

Highly sophisticated mechanisms confer on the immune system the capacity to respond with a certain degree of autonomy. However, the final outcome of an immune response depends on the interaction of the immune system with other systems. The immune and neuroendocrine systems have an intimate cross-com...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Gerez, J.
Otros Autores: Bonfiglio, J., Sosa, S., Giacomini, D., Acuña, M., Carbia Nagashima, A., Perone, M.J, Silberstein, S., Renner, U., Stalla, G.K, Arzt, E.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2007
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13663caa a22013937a 4500
001 PAPER-6423
003 AR-BaUEN
005 20230518203606.0
008 190411s2007 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-34548007879 
024 7 |2 cas  |a corticotropin, 11136-52-0, 9002-60-2, 9061-27-2; oncostatin M, 106956-32-5; prolactin, 12585-34-1, 50647-00-2, 9002-62-4; Cytokine Receptor gp130, 133483-10-0; Cytokines; Hormones 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a EXPHE 
100 1 |a Gerez, J. 
245 1 0 |a Molecular transduction mechanisms of cytokine-hormone interactions: Role of gp130 cytokines 
260 |c 2007 
270 1 0 |m Arzt, E.; Laboratorio de Fisiología Y Biología Molecular, FCEN, Ciudad Universitaria, 1428 Buenos Aires, Argentina; email: earzt@fbmc.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Ahima, R.S., Overcoming insulin resistance with CNTF. (2006) Nat Med, 12, pp. 511-512 
504 |a Akita, S., Conn, P.M., Melmed, S., Leukemia inhibitory factor (LIF) induces acute adrenocorticotrophic hormone (ACTH) secretion in fetal rhesus macaque primates: A novel dynamic test of pituitary function (1996) J Clin Endocrinol Metab, 81, pp. 4170-4178. , & 
504 |a Akita, S., Malkin, J., Melmed, S., Disrupted murine leukemia inhibitory factor (LIF) gene attenuates adrenocorticotropic hormone (ACTH) secretion. (1996) Endocrinology, 137, pp. 3140-3143. , & 
504 |a Arzt, E., Gp130 cytokine signaling in the pituitary gland: A paradigm for cytokine-neuro-endocrine pathways. (2001) J Clin Invest, 108, pp. 1729-1733 
504 |a Arzt, E., Buric, R., Stelzer, G., Stalla, J., Sauer, J., Renner, U., Stalla, G.K., Interleukin involvement in anterior pituitary cell growth regulation: Effects of IL-2 and IL-6. (1993) Endocrinology, 132, pp. 459-467. , & 
504 |a Arzt, E., Pereda, M.P., Castro, C.P., Pagotto, U., Renner, U., Stalla, G.K., Pathophysiological role of the cytokine network in the anterior pituitary gland. (1999) Front Neuroendocrinol, 20, pp. 71-95. , & 
504 |a Auernhammer, C.J., Bousquet, C., Melmed, S., Autoregulation of pituitary corticotroph SOCS-3 expression: Characterization of the murine SOCS-3 promoter. (1999) Proc Natl Acad Sci U S a, 96, pp. 6964-6969. , & 
504 |a Auernhammer, C.J., Melmed, S., Interleukin-11 stimulates proopiomelanocortin gene expression and adrenocorticotropin secretion in corticotroph cells: Evidence for a redundant cytokine network in the hypothalamo-pituitary-adrenal axis. (1999) Endocrinology, 140, pp. 1559-1566. , & 
504 |a Ben-Shlomo, A., Miklovsky, I., Ren, S.G., Yong, W.H., Heaney, A.P., Culler, M.D., Melmed, S., Leukemia inhibitory factor regulates prolactin secretion in prolactinoma and lactotroph cells. (2003) J Clin Endocrinol Metab, 88, pp. 858-863. , & 
504 |a Borg, S.A., Kerry, K.E., Baxter, L., Royds, J.A., Jones, T.H., Expression of interleukin-6 and its effects on growth of HP75 human pituitary tumor cells. (2003) J Clin Endocrinol Metab, 88, pp. 4938-4944. , & 
504 |a Bousquet, C., Susini, C., Melmed, S., Inhibitory roles for SHP-1 and SOCS-3 following pituitary proopiomelanocortin by leukemia inhibitory factor. (1999) J Clin Invest, 104, pp. 1277-1285. , & 
504 |a Bousquet, C., Zatelli, M.C., Melmed, S., Direct regulation of pituitary proopiomelanocortin by STAT3 provides a novel mechanism for immuno-neuroendocrine interfacing. (2000) J Clin Invest, 106, pp. 1417-1425. , & 
504 |a Carbia Nagashima, A.C., Giacomini, D., Castro, C.P., Pereda, M.P., Renner, U., Stalla, G.K., Arzt, E., Transcriptional regulation of interleukin-6 in pituitary folliculo-stellate TtT/GF cells. (2003) Mol Cell Endocrinol, 201, pp. 47-56. , & 
504 |a Chesnokova, V., Auerhamer, C.J., Melmed, S., Murine LIF gene disruption attenuates the hypothalamio-pituitary-adrenal axis stress response. (1998) Endocrinology, 139, pp. 2209-2216. , & 
504 |a Chesnokova, V., Kariagina, A., Melmed, S., Opposing effects of pituitary leukemia inhibitory factor and SOCS-3 on the ACTH axis response to inflammation. (2002) Am J Physiol Endocrinol Metab, 282, pp. E1110-E1118. , & 
504 |a Druker, J., Liberman, A.C., Acuna, M., Giacomini, D., Refojo, D., Silberstein, S., Pereda, M.P., Arzt, E., Molecular understanding of cytokine-steroid hormone dialogue: Implications for human diseases. (2006) Ann N Y Acad Sci, 1088, pp. 297-306. , & 
504 |a Febbraio, M.A., Gp130 receptor ligands as potential therapeutic targets for obesity. (2007) J Clin Invest, 117, pp. 841-849 
504 |a Gloddek, J., Lohrer, P., Stalla, J., Arzt, E., Stalla, G.K., Renner, U., The intrapituitary stimulatory effect of lipopolysaccharide on ACTH secretion is mediated by paracrine-acting IL-6. (2001) Exp Clin Endocrinol Diabetes, 109, pp. 410-415. , & 
504 |a Graciarena, M., Carbia-Nagashima, A., Onofri, C., Perez-Castro, C., Giacomini, D., Renner, U., Stalla, G.K., Arzt, E., Involvement of the gp130 cytokine transducer in MtT/S pituitary somatotroph tumour development in an autocrine-paracrine model. (2004) Eur J Endocrinol, 151, pp. 595-604. , & 
504 |a Hirano, T., Interleukin-6. (1994) The Cytokine Handbook, pp. 145-168. , In. ed. Thomson, A.W., pp. Academic Press, Osaka, Japan 
504 |a Kariagina, A., Zonis, S., Afkhami, M., Romanenko, D., Chesnokova, V., Leukemia inhibitory factor regulates glucocorticoid receptor expression in the hypothalamic-pituitary-adrenal axis. (2005) Am J Physiol Endocrinol Metab, 289, pp. E857-E863. , & 
504 |a Kurotani, R., Yasuda, M., Oyama, K., Egashira, N., Sugaya, M., Teramoto, A., Osamura, R.Y., Expression of interleukin-6, interleukin-6 receptor (gp80), and the receptor's signal-transducing subunit (gp130) in human normal pituitary glands and pituitary adenomas. (2001) Mod Pathol, 14, pp. 791-797. , & 
504 |a Lohrer, P., Gloddek, J., Carbia Nagashima, A.C., Korali, Z., Hopfner, U., Páez Pereda, M., Arzt, E., Renner, U., Lipopolysaccharide directly stimulates the intrapituitary interleukin-6 production by folliculostellate cells via specific receptors and the p38a mitogen-activated protein kinase/nuclear factor-κB pathway (2000) Endocrinology, 141, pp. 4457-4465. , & 
504 |a Páez Pereda, M., Lohrer, P., Kovalovsky, D., Perez Castro, C., Goldberg, V., Losa, M., Chervín, A., Arzt, E., Interleukin-6 is inhibited by glucocorticoids and stimulates ACTH secretion and POMC expression in human corticotroph pituitary adenomas. (2000) Exp Clin Endocrinol Diabetes, 108, pp. 202-207. , & 
504 |a Perez Castro, C., Carbia Nagashima, A.C., Pereda, M.P., Goldberg, V., Chervin, A., Largen, P., Renner, U., Arzt, E., The gp130 cytokines interleukin-11 and ciliary neurotropic factor regulate through specific receptors the function and growth of lactosomatotropic and folliculostellate pituitary cell lines. (2000) Endocrinology, 141, pp. 1746-1753. , & 
504 |a Perez Castro, C., Carbia Nagashima, A.C., Paez Pereda, M., Goldberg, V., Chervín, A., Carrizo, G., Molina, H., Arzt, E., Effects of the gp130 cytokines CNTF and IL-11 on pituitary cells: CNTF receptors on human pituitary adenomas and stimulation of PRL and GH secretion in normal rat anterior pituitary aggregate cultures. (2001) J Endo Crinol, 169, pp. 539-547. , & 
504 |a Perez Castro, C., Giacomini, D., Carbia Nagashima, A.C., Onofri, C., Graciarena, M., Kobayashi, K., Paez-Pereda, M., Arzt, E., Reduced expression of the cytokine transducer gp130 inhibits hormone secretion, cell growth, and tumor development of pituitary lactosomatotrophic GH3 cells. (2003) Endocrinology, 144, pp. 693-700. , & 
504 |a Shimon, I., Yan, X., Ray, D.W., Melmed, S., Cytokine dependent gp130 receptor subunit regulates human fetal pituitary adrenocorticotropin hormone and growth hormone secretion. (1997) J Clin Invest, 100, pp. 357-363. , & 
504 |a Sieving, P.A., Caruso, R.C., Tao, W., Coleman, H.R., Thompson, D.J., Fullmer, K.R., Bush, R.A., Ciliary neurotrophic factor (CNTF) for human retinal degeneration: Phase I trial of CNTF delivered by encapsulated cell intraocular implants. (2006) Proc Natl Acad Sci U S a, 103, pp. 3896-3901. , & 
504 |a Spangelo, B.L., Isakson, P.C., MacLeod, R.M., Production of interleukin-6 by anterior pituitary cells is stimulated by increased intracellular adenosine 3′,5′-monophosphate and vasoactive intestinal peptide. (1990) Endocrinology, 127, pp. 403-409. , & 
504 |a Stefana, B., Ray, D.W., Melmed, S., Leukemia inhibitory factor (LIF) induces differentiation of pituitary corticotroph function: A neuro-endocrine phenotypic switch. (1996) Proc Natl Acad Sci U S a, 93, pp. 12502-12506. , & 
504 |a Vankelecom, H., Carmeliet, P., Van Damme, J., Billiau, A., Denef, C., Production of interleukin-6 by folliculo-stellate cells of the anterior pituitary gland in a histiotypic cell aggregate culture system. (1989) Neuroendocrinology, 49, pp. 102-106. , & 
504 |a Wang, Z., Ren, S.G., Melmed, S., Hypothalamic and pituitary leukemia inhibitory factor gene expression in vivo: A novel endotoxin-inducible neuro-endocrine interface. (1996) Endocrinology, 137, pp. 2947-2953. , & 
504 |a Watt, M.J., Dzamko, N., Thomas, W.G., Rose-John, S., Ernst, M., Carling, D., Kemp, B.E., Steimberg, G.R., CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. (2006) Nat Med, 12, pp. 541-548. , & 
520 3 |a Highly sophisticated mechanisms confer on the immune system the capacity to respond with a certain degree of autonomy. However, the final outcome of an immune response depends on the interaction of the immune system with other systems. The immune and neuroendocrine systems have an intimate cross-communication that makes possible a satisfactory response to environmental changes. Part of this interaction occurs through cytokines and steroid hormones. The last step of this cross-talk is the molecular level. As a model of interaction, this review focuses on the gp130 cytokine family. These cytokines, as well as their receptors, are expressed in pituitary cells. They regulate hormone production as well as growth of pituitary cells. During acute or chronic inflammation or infection, systemic, hypothalamic and hypophyseal gp130 cytokines act on anterior pituitary cells, integrating the neuroendocrine-immune response. Disruptions of these pathways may lead not only to abnormal growth of pituitary cells but also to immune disorders, for which, based on recent findings, targeting these cytokines might be a novel therapeutic approach. © 2007 The Authors.  |l eng 
593 |a Laboratorio de Fisiología Y Biología Molecular, Departamento de Fisiología Y Biología Molecular Y Celular, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina 
593 |a Max Planck Institute of Psychiatry, 80804 Munich, Germany 
593 |a Laboratorio de Fisiología Y Biología Molecular, FCEN, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
690 1 0 |a CILIARY NEUROTROPHIC FACTOR 
690 1 0 |a CILIARY NEUROTROPHIC FACTOR RECEPTOR 
690 1 0 |a CORTICOTROPIN 
690 1 0 |a CYTOKINE RECEPTOR 
690 1 0 |a GLYCOPROTEIN GP 130 
690 1 0 |a INTERLEUKIN 11 
690 1 0 |a INTERLEUKIN 11 RECEPTOR 
690 1 0 |a INTERLEUKIN 6 
690 1 0 |a INTERLEUKIN 6 RECEPTOR 
690 1 0 |a LEUKEMIA INHIBITORY FACTOR 
690 1 0 |a ONCOSTATIN M 
690 1 0 |a PROLACTIN 
690 1 0 |a STEROID HORMONE 
690 1 0 |a ADENOHYPOPHYSIS 
690 1 0 |a CELL GROWTH 
690 1 0 |a CHRONIC INFLAMMATION 
690 1 0 |a CONFERENCE PAPER 
690 1 0 |a CORTICOTROPIN RELEASE 
690 1 0 |a CYTOKINE PRODUCTION 
690 1 0 |a ENDOCRINE SYSTEM 
690 1 0 |a ENVIRONMENTAL CHANGE 
690 1 0 |a GENETIC TRANSDUCTION 
690 1 0 |a HORMONE SYNTHESIS 
690 1 0 |a HUMAN 
690 1 0 |a HUMORAL IMMUNITY 
690 1 0 |a HYPOPHYSIS CELL 
690 1 0 |a HYPOPHYSIS GONAD SYSTEM 
690 1 0 |a HYPOTHALAMUS 
690 1 0 |a IMMUNE SYSTEM 
690 1 0 |a IMMUNITY 
690 1 0 |a IMMUNOPATHOLOGY 
690 1 0 |a NEUROENDOCRINE SYSTEM 
690 1 0 |a NONHUMAN 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a PROTEIN FUNCTION 
690 1 0 |a PROTEIN INTERACTION 
690 1 0 |a SIGNAL TRANSDUCTION 
690 1 0 |a ANIMALS 
690 1 0 |a CYTOKINE RECEPTOR GP130 
690 1 0 |a CYTOKINES 
690 1 0 |a HORMONES 
690 1 0 |a HUMANS 
690 1 0 |a NEUROIMMUNOMODULATION 
690 1 0 |a NEUROSECRETORY SYSTEMS 
690 1 0 |a SIGNAL TRANSDUCTION 
700 1 |a Bonfiglio, J. 
700 1 |a Sosa, S. 
700 1 |a Giacomini, D. 
700 1 |a Acuña, M. 
700 1 |a Carbia Nagashima, A. 
700 1 |a Perone, M.J. 
700 1 |a Silberstein, S. 
700 1 |a Renner, U. 
700 1 |a Stalla, G.K. 
700 1 |a Arzt, E. 
773 0 |d 2007  |g v. 92  |h pp. 801-806  |k n. 5  |p Exp. Physiol.  |x 09580670  |t Experimental Physiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-34548007879&doi=10.1113%2fexpphysiol.2007.036236&partnerID=40&md5=d26f3385d67aba4f0e48a18c98b04f37  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1113/expphysiol.2007.036236  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09580670_v92_n5_p801_Gerez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09580670_v92_n5_p801_Gerez  |y Registro en la Biblioteca Digital 
961 |a paper_09580670_v92_n5_p801_Gerez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 67376