Rapid recovery of releasable vesicles and formation of nonreleasable endosomes follow intense exocytosis in chromaffin cells

Neurons and neuroendocrine cells must retrieve plasma membrane excess and refill vesicle pools depleted by exocytosis. To perform these tasks cells can use different endocytosis/recycling mechanisms whose selection will impact on vesicle recycling time and secretion performance. We used FM1-43 to ev...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bay, A.E.P
Otros Autores: Ibañez, L.I, Marengo, F.D
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2007
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13995caa a22014657a 4500
001 PAPER-6301
003 AR-BaUEN
005 20230518203559.0
008 190411s2007 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-36048983360 
024 7 |2 cas  |a 2 morpholino 8 phenylchromone, 154447-36-6; acetylcholine, 51-84-3, 60-31-1, 66-23-9; calcium ion, 14127-61-8; nicotine, 54-11-5; 1-Phosphatidylinositol 3-Kinase, 2.7.1.137; ADVASEP 7; Acetylcholine, 51-84-3; Bromphenol Blue, 115-39-9; Calcium, 7440-70-2; Cholinergic Agonists; Cyclodextrins; FM1 43; Fluorescent Dyes; Nicotine, 54-11-5; Potassium, 7440-09-7; Protein Kinase Inhibitors; Pyridinium Compounds; Quaternary Ammonium Compounds 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a AJPCD 
100 1 |a Bay, A.E.P. 
245 1 0 |a Rapid recovery of releasable vesicles and formation of nonreleasable endosomes follow intense exocytosis in chromaffin cells 
260 |c 2007 
270 1 0 |m Marengo, F.D.; Laboratorio de Fisiología Y Biología Molecular, Instituto de Fisiología, Biología Molecular Y Neurociencias, Ciudad Universitaria-Pabellón II, CP 1428, Buenos Aires, Argentina; email: fernando@fbmc.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Ales, E., Tabares, L., Poyato, J.M., Valero, V., Lindau, M., Alvarez de Toledo, G., High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism (1999) Nat Cell Biol, 1, pp. 40-44 
504 |a Araki, N., Johnson, M.T., Swanson, J.A., A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages (1996) J Cell Biol, 135, pp. 1249-1260 
504 |a Artalejo, C.R., Elhamdani, A., Palfrey, H.C., Secretion: Dense-core vesicles can kiss-and-run too (1998) Curr Biol, 8, pp. R62-R65 
504 |a Artalejo, C.R., Elhamdani, A., Palfrey, H.C., Sustained stimulation shifts the mechanism of endocytosis from dynamin-1-dependent rapid endocytosis to clathrin- and dynamin-2-mediated slow endocytosis in chromaffin cells (2002) Proc Natl Acad Sci USA, 99, pp. 6358-6363 
504 |a Artalejo, C.R., Henley, J.R., McNiven, M.A., Palfrey, H.C., Rapid endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP, and dynamin but not clathrin (1995) Proc Natl Acad Sci USA, 92, pp. 8328-8332 
504 |a Augustine, G.J., Neher, E., Calcium requirements for secretion in bovine chromaffin cells (1992) J Physiol, 450, pp. 247-271 
504 |a Baartscheer, A., Schumacher, C.A., Opthof, T., Fiolet, J.W., The origin of increased cytoplasmic calcium upon reversal of the Na+/Ca 2+-exchanger in isolated rat ventricular myocytes (1996) J Mol Cell Cardiol, 28, pp. 1963-1973 
504 |a Bauer, R.A., Khera, R.S., Lieber, J.L., Angleson, J.K., Recycling of intact dense core vesicles in neurites of NGF-treated PC12 cells (2004) FEBS Lett, 571, pp. 107-111 
504 |a Bauer, R.A., Overlease, R.L., Lieber, J.L., Angleson, J.K., Retention and stimulus-dependent recycling of dense core vesicle content in neuroendocrine cells (2004) J Cell Sci, 117, pp. 2193-2202 
504 |a Burgoyne, R.D., Control of exocytosis in adrenal chromaffin cells (1991) Biochim Biophys Acta, 1071, pp. 174-202 
504 |a Burgoyne, R.D., Fast exocytosis and endocytosis triggered by depolarisation in single adrenal chromaffin cells before rapid Ca2+ current run-down (1995) Pflügers Arch, 430, pp. 213-219 
504 |a Chan, S.A., Smith, C., Low frequency stimulation of mouse adrenal slices reveals a clathrin-independent, protein kinase C-mediated endocytic mechanism (2003) J Physiol, 553, pp. 707-717 
504 |a Clague, M.J., Thorpe, C., Jones, A.T., Phosphatidylinositol 3-kinase regulation of fluid phase endocytosis (1995) FEBS Lett, 367, pp. 272-274 
504 |a de Lange, R.P., de Roos, A.D., Borst, J.G., Two modes of vesicle recycling in the rat calyx of Held (2003) J Neurosci, 23, pp. 10164-10173 
504 |a Dinkelacker, V., Voets, T., Neher, E., Moser, T., The readily releasable pool of vesicles in chromaffin cells is replenished in a temperature-dependent manner and transiently overfills at 37°C (2000) J Neurosci, 20, pp. 8377-8383 
504 |a Elhamdani, A., Azizi, F., Artalejo, C.R., Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in calf adrenal chromaffin cells: High calcium shifts the mechanism from kiss-and-run to complete fusion (2006) J Neurosci, 26, pp. 3030-3036 
504 |a Fulop, T., Radabaugh, S., Smith, C., Activity-dependent differential transmitter release in mouse adrenal chromaffin cells (2005) J Neurosci, 25, pp. 7324-7332 
504 |a Harata, N.C., Aravanis, A.M., Tsien, R.W., Kiss-and-run and full-collapse fusion as modes of exo-endocytosis in neurosecretion (2006) J Neurochem, 97, pp. 1546-1570 
504 |a Harata, N.C., Choi, S., Pyle, J.L., Aravanis, A.M., Tsien, R.W., Frequency-dependent kinetics and prevalence of kiss-and-run and reuse at hippocampal synapses studied with novel quenching methods (2006) Neuron, 49, pp. 243-256 
504 |a Heinemann, C., von Ruden, L., Chow, R.H., Neher, E., A two-step model of secretion control in neuroendocrine cells (1993) Pflügers Arch, 424, pp. 105-112 
504 |a Henkel, A.W., Horstmann, H., Henkel, M.K., Direct observation of membrane retrieval in chromaffin cells by capacitance measurements (2001) FEBS Lett, 505, pp. 414-418 
504 |a Holt, M., Cooke, A., Wu, M.M., Lagnado, L., Bulk membrane retrieval in the synaptic terminal of retinal bipolar cells (2003) J Neurosci, 23, pp. 1329-1339 
504 |a Kay, A.R., Alfonso, A., Alford, S., Cline, H.T., Holgado, A.M., Sakmann, B., Snitsarev, V.A., Wu, L.G., Imaging synaptic activity in intact brain and slices with FM1-43 in C. elegans, lamprey, and rat (1999) Neuron, 24, pp. 809-817 
504 |a Klingauf, J., Kavalali, E.T., Tsien, R.W., Kinetics and regulation of fast endocytosis at hippocampal synapses (1998) Nature, 394, pp. 581-585 
504 |a Koval, L.M., Yavorskaya, E.N., Lukyanetz, E.A., Electron microscopic evidence for multiple types of secretory vesicles in bovine chromaffin cells (2001) Gen Comp Endocrinol, 121, pp. 261-277 
504 |a Liu, P.S., Kao, L.S., Na+-dependent Ca2+ influx in bovine adrenal chromaffin cells (1990) Cell Calcium, 11, pp. 573-579 
504 |a Maxfield, F.R., McGraw, T.E., Endocytic recycling (2004) Nat Rev Mol Cell Biol, 5, pp. 121-132 
504 |a Moser, T., Neher, E., Estimation of mean exocytic vesicle capacitance in mouse adrenal chromaffin cells (1997) Proc Natl Acad Sci USA, 94, pp. 6735-6740 
504 |a Pan, C.Y., Huang, C.H., Lee, C.H., Calcium elevation elicited by reverse mode Na+/Ca2+ exchange activity is facilitated by intracellular calcium stores in bovine chromaffin cells (2006) Biochem Biophys Res Commun, 342, pp. 589-595 
504 |a Pan, C.Y., Kao, L.S., Catecholamine secretion from bovine adrenal chromaffin cells: The role of the Na+/Ca2+ exchanger and the intracellular Ca2+ pool (1997) J Neurochem, 69, pp. 1085-1092 
504 |a Patzak, A., Winkler, H., Exocytotic exposure and recycling of membrane antigens of chromaffin granules: Ultrastructural evaluation after immunolabeling (1986) J Cell Biol, 102, pp. 510-515 
504 |a Perrais, D., Kleppe, I.C., Taraska, J.W., Almers, W., Recapture after exocytosis causes differential retention of protein in granules of bovine chromaffin cells (2004) J Physiol, 560, pp. 413-428 
504 |a Phillips, J.H., Burridge, K., Wilson, S.P., Kirshner, N., Visualization of the exocytosis/endocytosis secretory cycle in cultured adrenal chromaffin cells (1983) J Cell Biol, 97, pp. 1906-1917 
504 |a Richards, D.A., Guatimosim, C., Betz, W.J., Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals (2000) Neuron, 27, pp. 551-559 
504 |a Rizzoli, S.O., Betz, W.J., Synaptic vesicle pools (2005) Nat Rev Neurosci, 6, pp. 57-69 
504 |a Smith, C.B., Betz, W.J., Simultaneous independent measurement of endocytosis and exocytosis (1996) Nature, 380, pp. 531-534 
504 |a Taraska, J.W., Perrais, D., Ohara-Imaizumi, M., Nagamatsu, S., Almers, W., Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells (2003) Proc Natl Acad Sci USA, 100, pp. 2070-2075 
504 |a Tomoda, H., Kishimoto, Y., Lee, Y.C., Temperature effect on endocytosis and exocytosis by rabbit alveolar macrophages (1989) J Biol Chem, 264, pp. 15445-15450 
504 |a von Grafenstein, H., Knight, D.E., Membrane recapture and early triggered secretion from the newly formed endocytotic compartment in bovine chromaffin cells (1992) J Physiol, 453, pp. 15-31 
504 |a Wick, P.F., Trenkle, J.M., Holz, R.W., Punctate appearance of dopamine-beta-hydroxylase on the chromaffin cell surface reflects the fusion of individual chromaffin granules upon exocytosis (1997) Neuroscience, 80, pp. 847-860 
520 3 |a Neurons and neuroendocrine cells must retrieve plasma membrane excess and refill vesicle pools depleted by exocytosis. To perform these tasks cells can use different endocytosis/recycling mechanisms whose selection will impact on vesicle recycling time and secretion performance. We used FM1-43 to evaluate in the same experiment exocytosis, endocytosis, and recovery of releasable vesicles on mouse chromaffin cells. Various exocytosis levels were induced by a variety of stimuli, and we discriminated the resultant endocytosis-recycling responses according to their ability to rapidly generate releasable vesicles. Exocytosis of ≤20% of plasma membrane (provoked by nicotine/acetylcholine) was followed by total recovery of releasable vesicles. If a stronger stimulus (50 mM K + and 2 mM Ca2+) provoking intense exocytosis (51 ± 7%) was applied, endocytosis still retrieved all the fused membrane, but only a fraction (19 ± 2%) was releasable by a second stimulus. Using ADVASEP-7 or bromophenol blue to quickly eliminate fluorescence from noninternalized FM1-43, we determined that this fraction became releasable in <2 min. The remaining nonreleasable fraction was distributed mainly as fluorescent spots (∼0.7 μm) selectively labeled by 40- to 70-kDa dextrans and was suppressed by a phosphatidylinositol-3-phosphate kinase inhibitor, suggesting that it had been formed by a bulk retrieval mechanism. We concluded that chromaffin cells can rapidly recycle significant fractions of their total vesicle population, and that this pathway prevails when cholinergic agonists are used as secretagogues. When exocytosis exceeded ∼20% of plasma membrane, an additional mechanism was activated, which was unable to produce secretory vesicles in our experimental time frame but appeared crucial to maintaining membrane surface homeostasis under extreme conditions. Copyright © 2007 the American Physiological Society.  |l eng 
593 |a Laboratorio de Fisiología Y Biología Molecular, Inst. de Fisiol., Biologia Molec. Y Neurociencias (Consejo Nac. de Invest. Cientificas Y Tecnicas), Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Laboratorio de Fisiología Y Biología Molecular, Instituto de Fisiología, Biología Molecular Y Neurociencias, Ciudad Universitaria-Pabellón II, CP 1428, Buenos Aires, Argentina 
690 1 0 |a ADVASEP-7 
690 1 0 |a BROMOPHENOL BLUE 
690 1 0 |a CALCIUM SIGNAL 
690 1 0 |a ENDOCYTOSIS 
690 1 0 |a FM1-43 
690 1 0 |a MOUSE CHROMAFFIN CELLS 
690 1 0 |a 2 MORPHOLINO 8 PHENYLCHROMONE 
690 1 0 |a ACETYLCHOLINE 
690 1 0 |a CALCIUM ION 
690 1 0 |a FLUORESCENT DYE 
690 1 0 |a FMI 43 
690 1 0 |a NICOTINE 
690 1 0 |a PHOSPHATIDYLINOSITOL 3 KINASE INHIBITOR 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ADRENAL GLAND 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ARTICLE 
690 1 0 |a CHROMAFFIN CELL 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a ENDOCYTOSIS 
690 1 0 |a ENDOSOME 
690 1 0 |a EXOCYTOSIS 
690 1 0 |a FLUORESCENCE 
690 1 0 |a MEMBRANE VESICLE 
690 1 0 |a MOUSE 
690 1 0 |a NEUROSECRETORY CELL 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a 1-PHOSPHATIDYLINOSITOL 3-KINASE 
690 1 0 |a ACETYLCHOLINE 
690 1 0 |a ADRENAL GLANDS 
690 1 0 |a ANIMALS 
690 1 0 |a BROMPHENOL BLUE 
690 1 0 |a CALCIUM 
690 1 0 |a CELLS, CULTURED 
690 1 0 |a CHOLINERGIC AGONISTS 
690 1 0 |a CHROMAFFIN CELLS 
690 1 0 |a CYCLODEXTRINS 
690 1 0 |a ENDOCYTOSIS 
690 1 0 |a ENDOSOMES 
690 1 0 |a EXOCYTOSIS 
690 1 0 |a FLUORESCENT DYES 
690 1 0 |a MEMBRANE FUSION 
690 1 0 |a MICE 
690 1 0 |a NICOTINE 
690 1 0 |a POTASSIUM 
690 1 0 |a PROTEIN KINASE INHIBITORS 
690 1 0 |a PYRIDINIUM COMPOUNDS 
690 1 0 |a QUATERNARY AMMONIUM COMPOUNDS 
690 1 0 |a STAINING AND LABELING 
690 1 0 |a TIME FACTORS 
690 1 0 |a TRANSPORT VESICLES 
650 1 7 |2 spines  |a HOMEOSTASIS 
650 1 7 |2 spines  |a HOMEOSTASIS 
653 0 0 |a FMI 43 
700 1 |a Ibañez, L.I. 
700 1 |a Marengo, F.D. 
773 0 |d 2007  |g v. 293  |h pp. C1509-C1522  |k n. 5  |p Am. J. Physiol. Cell Physiol.  |x 03636143  |w (AR-BaUEN)CENRE-3645  |t American Journal of Physiology - Cell Physiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-36048983360&doi=10.1152%2fajpcell.00632.2006&partnerID=40&md5=d21b6dded01a4d6fa49d66d39eed68dc  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1152/ajpcell.00632.2006  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03636143_v293_n5_pC1509_Bay  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03636143_v293_n5_pC1509_Bay  |y Registro en la Biblioteca Digital 
961 |a paper_03636143_v293_n5_pC1509_Bay  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion