The role of N-β-alanyldopamine synthase in the innate immune response of two insects

Insects trigger a multifaceted innate immune response to fight microbial infections. We show that in the yellow mealworm, Tenebrio molitor, septic injuries induce the synthesis of N-β-alanyldopamine (NBAD), which is known as the main sclerotization precursor of insect brown cuticles. We demonstrate...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Schachter, J.
Otros Autores: Pérez, M.M, Quesada-Allué, L.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2007
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10890caa a22013217a 4500
001 PAPER-6288
003 AR-BaUEN
005 20230518203558.0
008 190411s2007 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-35549004550 
024 7 |2 cas  |a dopamine, 51-61-6, 62-31-7; ligase, 9080-13-1; Dopamine, 51-61-6; Insect Proteins; Ligases, 6.-; N(beta)-alanyldopamine, 54653-62-2; catecholamine-beta-alanyl ligase, 6.3.2. 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JIPHA 
100 1 |a Schachter, J. 
245 1 4 |a The role of N-β-alanyldopamine synthase in the innate immune response of two insects 
260 |c 2007 
270 1 0 |m Quesada-Allué, L.A.; Department of Biological Chemistry, FCEyN, University of Buenos Aires, Patricias Argentinas 435, Buenos Aires 1405, Argentina; email: lualque@iib.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Agaisse, H., Petersen, U.M., Boutros, M., Mathey-Prevot, B., Perrimon, N., Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury (2003) Developmental Cell, 5, pp. 441-450 
504 |a Ashida, M., Brey, P.T., Role of the integument in insect defense: pro-phenol oxidase cascade in the cuticular matrix (1995) Proceedings of the National Academy of Sciences of the United States of America, 92, pp. 10698-10702 
504 |a Brennan, C.A., Delaney, J.R., Schneider, D.S., Anderson, K.V., Psidin is required in Drosophila blood cells for both phagocytic degradation and immune activation of the fat body (2007) Current Biology, 17, pp. 67-72 
504 |a Eriksson, B.M., Persson, B.A., Determination of catecholamines in rat heart tissue and plasma samples by liquid chromatography with electrochemical detection (1982) Journal of Chromatography, 228, pp. 143-154 
504 |a Ferrandon, D., Imler, J.L., Hoffman, J.A., Sensing infection in Drosophila: toll and beyond (2004) Seminars in Immunology, 16, pp. 43-53 
504 |a Hoffmann, J.A., The immune response of Drosophila (2003) Nature, 426, pp. 33-38 
504 |a Hoffmann, J.A., Reichardt, J.M., Drosophila innate immunity: an evolutionary perspective (2002) Nature Immunology, 3, pp. 121-126 
504 |a Hopkins, T.L., Kramer, K.J., Insect cuticle sclerotization (1992) Annual Review of Entomology, 37, pp. 273-302 
504 |a Hopkins, T.L., Morgan, T.D., Aso, Y., Kramer, K.J., N-β-alanyldopamine: major role in insect cuticle tanning (1982) Science, 217, pp. 363-366 
504 |a Hopkins, T.L., Starkey, S.R., Beckage, N.E., Tyrosine and catecholamine levels in the hemolymph of tobacco hornworm larvae, Manduca sexta, parasitized by the braconid wasp, Cotesia congregata, and in the developing parasitoids (1998) Archives of Insect Biochemistry and Physiology, 38, pp. 193-201 
504 |a Kano, Y., Natori, S., Sarcophagine β-alanyl-l-tyrosine synthesis in the fat body of Sarcophaga peregrina larvae (1984) Journal of Biochemistry, 95, pp. 1041-1046 
504 |a Kim, M.H., Joo, C.H., Cho, M.Y., Kwon, T.H., Lee, K.M., Natori, S., Lee, T.H., Lee, B.L., Bacterial-injection-induced syntheses of N-β-alanyldopamine and dopa decarboxilase in the hemolymph of coleopteran insect, Tenebrio molitor larvae (2000) European Journal of Biochemistry, 269, pp. 2599-2608 
504 |a Kramer, K.J., Hopkins, Y.L., Tyrosine metabolism for insect cuticle tanning (1987) Archives of Insect Biochemistry and Physiology, 6, pp. 279-301 
504 |a Leem, J.Y., Nishimura, C., Kurata, S., Shimada, I., Kobayashi, A., Natori, S., Purification and characterization of N-β-alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine, a novel antibacterial substance of Sarcophaga peregrina (flesh fly) (1996) Journal of Biological Chemistry, 271, pp. 13573-13577 
504 |a Lemaitre, B., Reichardt, J.M., Hoffmann, J.A., Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms (1997) Proceedings of the National Academy of Sciences of the United States of America, 94, pp. 14614-14619 
504 |a Meylaers, K., Cerstiaens, A., Vierstrate, E., Baderman, G., Michiels, W.D., De Loof, A., Schoofs, L., Antimicrobial compounds of low molecular mass are constitutively present in insects: characterisation of β-alanyl-tyrosine (2003) Current Pharmaceutical Design, 9, pp. 159-174 
504 |a Nappi, A.J., Ottaviani, E., Cytotoxicity and cytotoxic molecules in invertebrates (2000) Bioessays, 22, pp. 469-480 
504 |a Natori, S., Shiraishi, H., Horis, S., Kobayashi, A., The roles of Sarcophaga defense molecules in immunity and metamorphosis (1999) Developmental and Comparative Immunology, 23, pp. 317-328 
504 |a Pérez, M., Wappner, P., Quesada-Allué, L.A., Catecholamine-β-alanyl ligase in the medfly Ceratitis capitata (2002) Insect Biochemistry and Molecular Biology, 32, pp. 617-625 
504 |a Pérez, M., Schachter, J., Quesada-Allué, L.A., Constitutive activity of N-β-alanyl-catecholamine ligase in insect brain (2004) Neuroscience Letter, 368, pp. 186-191 
504 |a Rabossi, A., Wappner, P., Quesada-Allué, L.A., Larva to pharate adult transformation in the medfly Ceratitis capitata (Wiedemann) (Diptera; Tephritidae) (1992) Canadian Entomologist, 124, pp. 1139-1147 
504 |a Rabossi, A., Ación, L., Quesada-Allué, L.A., Metamorphosis-associated proteolysis in Ceratitis capitata (2000) Entomologia Experimentalis et Applicata, 94, pp. 57-65 
504 |a Royet, J., Reichardt, J.M., Hoffmann, J.A., Sensing and signaling during infection in Drosophila (2005) Current Opinion in Immunology, 17, pp. 11-17 
504 |a Tzou, P., De Gregorio, E., Lemaitre, B., How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions (2002) Current Opinion in Microbiology, 5, pp. 102-110 
504 |a Wappner, P., Kramer, K.J., Hopkins, T.L., Cladera, J.L., Manso, F., Quesada-Allué, L.A., Role of catecholamines and β-alanine in puparial color of wild type and melanic mutants of the Mediterranean fruit fly (Ceratitis capitata) (1996) Journal of Insect Physiology, 42, pp. 455-461 
504 |a Wappner, P., Kramer, K.J., Manso, F., Hopkins, T.L., Quesada-Allué, L.A., N-β-alanyldopamine metabolism in wild type and niger mutant strains of the Mediterranean fruit fly Ceratitis capitata (1996) Insect Biochemistry and Molecular Biology, 26, pp. 585-592 
504 |a Willis, J.H., Morphogenetic action of insect hormones (1974) Annual Review of Entomology, 19, pp. 97-115 
504 |a Yamasaki, N., Aso, Y., Tsukamoto, T., A convenient method for the preparation of N-β-alanyldopamine as substrate of phenol-oxidase (1990) Agricultural and Biological Chemistry, 54, pp. 833-836 
520 3 |a Insects trigger a multifaceted innate immune response to fight microbial infections. We show that in the yellow mealworm, Tenebrio molitor, septic injuries induce the synthesis of N-β-alanyldopamine (NBAD), which is known as the main sclerotization precursor of insect brown cuticles. We demonstrate that NBAD synthase is induced in the epidermis of the mealworm and of the Medfly, Ceratitis capitata, by infection with Escherichia coli. Our results indicate that synthesis of NBAD seems to be a novel component of the overall innate immune response in insects. © 2007 Elsevier Ltd. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: We thank Lorena Inzillo for sharing preliminary data from her Master's Thesis and Luciana Pujol-Lereis for a novel fly food. We are indebted to Jan Drijfhout (Leiden University, The Netherlands) and José M. Aguirre (University of Luján, Argentina), for the very helpful synthesis of NBAD derivatives. We also thank Beatriz Mendez (School of Sciences, University of Buenos Aires) for providing a B. megaterium strain. M.P. is a Fellow of the CONICET. L.Q.-A is full Professor at the University of Buenos Aires and Principal Researcher of the CONICET and of the Leloir Foundation. This work was supported by the University of Buenos Aires, the ANPCyT-SECyT-PICT-2003-351 and the CONICET. 
593 |a Department of Biological Chemistry, FCEyN, University of Buenos Aires, Patricias Argentinas 435, Buenos Aires 1405, Argentina 
690 1 0 |a Β-ALANINE 
690 1 0 |a CERATITIS CAPITATA 
690 1 0 |a INSECT IMMUNITY 
690 1 0 |a N-Β-ALANYLDOPAMINE 
690 1 0 |a TENEBRIO MOLITOR 
690 1 0 |a CATECHOLAMINE BETA ALANYL LIGASE 
690 1 0 |a CATECHOLAMINE-BETA-ALANYL LIGASE 
690 1 0 |a DOPAMINE 
690 1 0 |a DRUG DERIVATIVE 
690 1 0 |a INSECT PROTEIN 
690 1 0 |a LIGASE 
690 1 0 |a N(BETA) ALANYLDOPAMINE 
690 1 0 |a N(BETA)-ALANYLDOPAMINE 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a BEETLE 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a FLY 
690 1 0 |a IMMUNE RESPONSE 
690 1 0 |a LARVA 
690 1 0 |a ANIMAL 
690 1 0 |a ARTICLE 
690 1 0 |a ENZYME INDUCTION 
690 1 0 |a ENZYMOLOGY 
690 1 0 |a EPIDERMIS 
690 1 0 |a ESCHERICHIA COLI 
690 1 0 |a IMMUNOLOGY 
690 1 0 |a INNATE IMMUNITY 
690 1 0 |a LARVA 
690 1 0 |a MEDITERRANEAN FRUIT FLY 
690 1 0 |a METABOLISM 
690 1 0 |a MICROBIOLOGY 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a TENEBRIO 
690 1 0 |a TIME 
690 1 0 |a ANIMALS 
690 1 0 |a CERATITIS CAPITATA 
690 1 0 |a DOPAMINE 
690 1 0 |a ENZYME INDUCTION 
690 1 0 |a EPIDERMIS 
690 1 0 |a ESCHERICHIA COLI 
690 1 0 |a IMMUNITY, NATURAL 
690 1 0 |a INSECT PROTEINS 
690 1 0 |a LARVA 
690 1 0 |a LIGASES 
690 1 0 |a TENEBRIO 
690 1 0 |a TIME FACTORS 
690 1 0 |a CERATITIS CAPITATA 
690 1 0 |a ESCHERICHIA COLI 
690 1 0 |a HEXAPODA 
690 1 0 |a TENEBRIO 
690 1 0 |a TENEBRIO MOLITOR 
700 1 |a Pérez, M.M. 
700 1 |a Quesada-Allué, L.A. 
773 0 |d 2007  |g v. 53  |h pp. 1188-1197  |k n. 11  |p J. Insect Physiol.  |x 00221910  |w (AR-BaUEN)CENRE-668  |t Journal of Insect Physiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-35549004550&doi=10.1016%2fj.jinsphys.2007.06.010&partnerID=40&md5=9c95d39247e5a82327e3b357d31ddb96  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jinsphys.2007.06.010  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00221910_v53_n11_p1188_Schachter  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221910_v53_n11_p1188_Schachter  |y Registro en la Biblioteca Digital 
961 |a paper_00221910_v53_n11_p1188_Schachter  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 67241