A pivotal role for galectin-1 in fetomaternal tolerance
A successful pregnancy requires synchronized adaptation of maternal immune-endocrine mechanisms to the fetus. Here we show that galectin-1 (Gal-1), an immunoregulatory glycan-binding protein, has a pivotal role in conferring fetomaternal tolerance. Consistently with a marked decrease in Gal-1 expres...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , , , , , , , , , , , , , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2007
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 19016caa a22017537a 4500 | ||
|---|---|---|---|
| 001 | PAPER-6201 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518203552.0 | ||
| 008 | 190411s2007 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-36849020587 | |
| 024 | 7 | |2 cas |a galectin 1, 258495-34-0; Galectin 1; Interleukin-2 Receptor alpha Subunit; Polysaccharides | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a NAMEF | ||
| 100 | 1 | |a Blois, S.M. | |
| 245 | 1 | 2 | |a A pivotal role for galectin-1 in fetomaternal tolerance |
| 260 | |c 2007 | ||
| 270 | 1 | 0 | |m Blois, S.M.; University Medicine Berlin, Biomedical Research Building, Campus Virchow, Augustenburger Platz 1, Berlin 13353, Germany; email: sandra.blois@charite.de |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Trowsdale, J., Betz, A.G., Mother's little helpers: Mechanisms of maternal-fetal tolerance (2006) Nat. Immunol, 7, pp. 241-246 | ||
| 504 | |a Chaouat, G., Ledee-Bataille, N., Chea, K.B., Dubanchet, S., Cytokines and implantation (2005) Chem. Immunol. Allergy, 88, pp. 34-63 | ||
| 504 | |a Lin, H., Mosmann, T.R., Guilbert, L., Tuntipopipat, S., Wegmann, T.G., Synthesis of T helper 2-type cytokines at the maternal-fetal interface (1993) J. Immunol, 151, pp. 4562-4573 | ||
| 504 | |a Piccinni, M.P., Defective production of both leukemia inhibitory factor and type 2 T-helper cytokines by decidual T cells in unexplained recurrent abortions (1998) Nat. Med, 4, pp. 1020-1024 | ||
| 504 | |a Blois, S.M., Depletion of CD8+ cells abolishes the pregnancy protective effect of progesterone substitution with dydrogesterone in mice by altering the TH1/TH2 cytokine profile (2004) J. Immunol, 172, pp. 5893-5899 | ||
| 504 | |a Aluvihare, V.R., Kallikourdis, M., Betz, A.G., Regulatory T cells mediate maternal tolerance to the fetus (2004) Nat. Immunol, 5, pp. 266-271 | ||
| 504 | |a Kallikourdis, M., Andersen, K.G., Welch, K.A., Betz, A.G., Alloantigen-enhanced accumulation of CCR5+ 'effector' regulatory T cells in the gravid uterus (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 594-599 | ||
| 504 | |a Sasaki, Y., Decidual and peripheral blood CD4 +CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases (2004) Mol. Hum. Reprod, 10, pp. 347-353 | ||
| 504 | |a Somerset, D.A., Zheng, Y., Kilby, M.D., Sansom, D.M., Drayson, M.T., Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset (2004) Immunology, 112, pp. 38-43 | ||
| 504 | |a Zhu, X.Y., Blockade of CD86 signaling facilitates a T H2 bias at the maternal-fetal interface and expands peripheral CD4+CD25+ regulatory T cells to rescue abortionprone fetuses (2005) Biol. Reprod, 72, pp. 338-345 | ||
| 504 | |a Guleria, I., A critical role for the programmed death ligand 1 in fetomaternal tolerance (2005) J. Exp. Med, 202, pp. 231-237 | ||
| 504 | |a Poehlmann, T.G., The possible role of the Jak/STAT pathway in lymphocytes at the fetomaternal interface (2005) Chem. Immunol. Allergy, 89, pp. 26-35 | ||
| 504 | |a Ayatollahi, M., Geramizadeh, B., Samsami, A., Transforming growth factor β-1 influence on fetal allografts during pregnancy (2005) Transplant. Proc, 37, pp. 4603-4604 | ||
| 504 | |a Clark, D.A., Banwatt, D., Chaouat, G., Stress-triggered abortion in mice prevented by alloimmunization (1993) Am. J. Reprod. Immunol, 29, pp. 141-147 | ||
| 504 | |a Blois, S., Intercellular adhesion molecule-1/LFA-1 cross talk is a proximate mediator capable of disrupting immune integration and tolerance mechanism at the feto-maternal interface in murine pregnancies (2005) J. Immunol, 174, pp. 1820-1829 | ||
| 504 | |a Kammerer, U., Unique appearance of proliferating antigen-presenting cells expressing DC-SIGN (CD209) in the decidua of early human pregnancy (2003) Am. J. Pathol, 162, pp. 887-896 | ||
| 504 | |a Miyazaki, S., Predominance of TH2-promoting dendritic cells in early human pregnancy decidua (2003) J. Leukoc. Biol, 74, pp. 514-522 | ||
| 504 | |a Arck, P., Hansen, P.J., Mulac Jericevic, B., Piccinni, M.P., Szekeres-Bartho, J., Progesterone during pregnancy: Endocrine-immune cross talk in mammalian species and the role of stress (2007) Am. J. Reprod. Immunol, 58, pp. 268-279 | ||
| 504 | |a Rabinovich, G.A., Liu, F.T., Hirashima, M., Anderson, A., An emerging role for galectins in tuning the immune response: Lessons from experimental models of inflammatory disease, autoimmunity and cancer (2007) Scand. J. Immunol, 66, pp. 143-158 | ||
| 504 | |a Stillman, B.N., Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death (2006) J. Immunol, 176, pp. 778-789 | ||
| 504 | |a Blaser, C., β-galactoside-binding protein secreted by activated T cells inhibits antigen-induced proliferation of T cells (1998) Eur. J. Immunol, 28, pp. 2311-2319 | ||
| 504 | |a Chung, C.D., Patel, V.P., Moran, M., Lewis, L.A., Miceli, M.C., Galectin-1 induces partial TCR ζ-chain phosphorylation and antagonizes processive TCR signal transduction (2000) J. Immunol, 165, pp. 3722-3729 | ||
| 504 | |a Stowell, S.R., Human galectin-1, -2, and -4 induce surface exposure of phosphatidylserine in activated human neutrophils but not in activated T cells (2007) Blood, 109, pp. 219-227 | ||
| 504 | |a Rabinovich, G.A., Specific inhibition of T-cell adhesion to extracellular matrix and proinflammatory cytokine secretion by human recombinant galectin-1 (1999) Immunology, 97, pp. 100-106 | ||
| 504 | |a Rabinovich, G.A., Recombinant galectin-1 and its genetic delivery suppress collagen-induced arthritis via T cell apoptosis (1999) J. Exp. Med, 190, pp. 385-398 | ||
| 504 | |a Toscano, M.A., Galectin-1 suppresses autoimmune retinal disease by promoting concomitant TH2- and T regulatory-mediated anti-inflammatory responses (2006) J. Immunol, 176, pp. 6323-6332 | ||
| 504 | |a Perone, M.J., Dendritic cells expressing transgenic galectin-1 delay onset of autoimmune diabetes in mice (2006) J. Immunol, 177, pp. 5278-5289 | ||
| 504 | |a Rubinstein, N., Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; A potential mechanism of tumor-immune privilege (2004) Cancer Cell, 5, pp. 241-251 | ||
| 504 | |a von Wolff, M., Wang, X., Gabius, H.J., Strowitzki, T., Galectin fingerprinting in human endometrium and decidua during the menstrual cycle and in early gestation (2005) Mol. Hum. Reprod, 11, pp. 189-194 | ||
| 504 | |a Phillips, B., Differential expression of two β-galactoside-binding lectins in the reproductive tracts of pregnant mice (1996) Biol. Reprod, 55, pp. 548-558 | ||
| 504 | |a Maquoi, E., van den Brule, F.A., Castronovo, V., Foidart, J.M., Changes in the distribution pattern of galectin-1 and galectin-3 in human placenta correlates with the differentiation pathways of trophoblasts (1997) Placenta, 18, pp. 433-439 | ||
| 504 | |a Bozic, M., Galectin-1 and galectin-3 in the trophoblast of the gestational trophoblastic disease (2004) Placenta, 25, pp. 797-802 | ||
| 504 | |a Koopman, L.A., Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential (2003) J. Exp. Med, 198, pp. 1201-1212 | ||
| 504 | |a Adamson, S.L., Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta (2002) Dev. Biol, 250, pp. 358-373 | ||
| 504 | |a Faria, T.N., Ogren, L., Talamantes, F., Linzer, D.I., Soares, M.J., Localization of placental lactogen-I in trophoblast giant cells of the mouse placenta (1991) Biol. Reprod, 44, pp. 327-331 | ||
| 504 | |a Chaouat, G., A brief review of recent data on some cytokine expressions at the materno-foetal interface which might challenge the classical TH1/TH2 dichotomy (2002) J. Reprod. Immunol, 53, pp. 241-256 | ||
| 504 | |a Toscano, M.A., Differential glycosylation of TH1, TH2 and TH17 effector cells selectively regulates susceptibility to cell death (2007) Nat. Immunol, 8, pp. 825-834 | ||
| 504 | |a Zhu, C., The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity (2005) Nat. Immunol, 6, pp. 1245-1252 | ||
| 504 | |a Choe, Y.S., Expression of galectin-1 mRNA in the mouse uterus is under the control of ovarian steroids during blastocyst implantation (1997) Mol. Reprod. Dev, 48, pp. 261-266 | ||
| 504 | |a Walzel, H., Effects of galectin-1 on regulation of progesterone production in granulosa cells from pig ovaries in vitro (2004) Glycobiology, 14, pp. 871-881 | ||
| 504 | |a Jeschke, U., Binding of galectin-1 (Gal-1) on trophoblast cells and inhibition of hormone production of trophoblast tumor cells in vitro by Gal-1 (2004) Histochem. Cell Biol, 121, pp. 501-508 | ||
| 504 | |a Erlebacher, A., Zhang, D., Parlow, A.F., Glimcher, L.H., Ovarian insufficiency and early pregnancy loss induced by activation of the innate immune system (2004) J. Clin. Invest, 114, pp. 39-48 | ||
| 504 | |a Blois, S.M., Lineage, maturity, and phenotype of uterine murine dendritic cells throughout gestation indicate a protective role in maintaining pregnancy (2004) Biol. Reprod, 70, pp. 1018-1023 | ||
| 504 | |a Fulcher, J.A., Galectin-1-matured human monocyte-derived dendritic cells have enhanced migration through extracellular matrix (2006) J. Immunol, 177, pp. 216-226 | ||
| 504 | |a Garcia, M.G., High expression of survivin and down-regulation of Stat-3 characterize the feto-maternal interface in failing murine pregnancies during the implantation period (2007) Placenta, 28, pp. 650-657 | ||
| 504 | |a Liu, A.X., Proteomic analysis on the alteration of protein expression in the placental villous tissue of early pregnancy loss (2006) Biol. Reprod, 75, pp. 414-420 | ||
| 504 | |a van der Leij, J., Strongly enhanced IL-10 production using stable galectin-1 homodimers (2007) Mol. Immunol, 44, pp. 506-513 | ||
| 504 | |a Garin, M.I., Galectin-1: A key effector of regulation mediated by CD4HCD25H T cells (2007) Blood, 109, pp. 2058-2065 | ||
| 504 | |a Poirier, F., Robertson, E.J., Normal development of mice carrying a null mutation in the gene encoding the L14 S-type lectin (1993) Development, 119, pp. 1229-1236 | ||
| 520 | 3 | |a A successful pregnancy requires synchronized adaptation of maternal immune-endocrine mechanisms to the fetus. Here we show that galectin-1 (Gal-1), an immunoregulatory glycan-binding protein, has a pivotal role in conferring fetomaternal tolerance. Consistently with a marked decrease in Gal-1 expression during failing pregnancies, Gal-1-deficient (Lgals1-/-) mice showed higher rates of fetal loss compared to wild-type mice in allogeneic matings, whereas fetal survival was unaffected in syngeneic matings. Treatment with recombinant Gal-1 prevented fetal loss and restored tolerance through multiple mechanisms, including the induction of tolerogenic dendritic cells, which in turn promoted the expansion of interleukin-10 (IL-10)-secreting regulatory T cells in vivo. Accordingly, Gal-1's protective effects were abrogated in mice depleted of regulatory T cells or deficient in IL-10. In addition, we provide evidence for synergy between Gal-1 and progesterone in the maintenance of pregnancy. Thus, Gal-1 is a pivotal regulator of fetomaternal tolerance that has potential therapeutic implications in threatened pregnancies. © 2007 Nature Publishing Group. |l eng | |
| 536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas | ||
| 536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas | ||
| 536 | |a Detalles de la financiación: National Science and Technology Development Agency, PICT 2003–05–13787 | ||
| 536 | |a Detalles de la financiación: Universidad de Buenos Aires, M091 | ||
| 536 | |a Detalles de la financiación: German Academic Exchange Service London | ||
| 536 | |a Detalles de la financiación: Council for Higher Education | ||
| 536 | |a Detalles de la financiación: John Simon Guggenheim Memorial Foundation | ||
| 536 | |a Detalles de la financiación: European Commission | ||
| 536 | |a Detalles de la financiación: Cancer Research Institute | ||
| 536 | |a Detalles de la financiación: Ligue Contre le Cancer | ||
| 536 | |a Detalles de la financiación: Mizutani Foundation for Glycoscience | ||
| 536 | |a Detalles de la financiación: Sixth Framework Programme | ||
| 536 | |a Detalles de la financiación: Deutsche Forschungsgemeinschaft, AR232/8–1 | ||
| 536 | |a Detalles de la financiación: 1Charité, University Medicine Berlin, Biomedical Research Building, Campus Virchow, Augustenburger Platz 1, Berlin 13353, Germany. 2Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Vuelta de Obligado 2490, Buenos Aires C1428, Argentina. 3Department of Medicine, Division of Hepatology, Gastroenterology, and Endocrinology, Charité, University Medicine Berlin, Berlin 13353, Germany. 4Unidad de Inmunología, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Granada, Granada 18012, Spain. 5Placenta-Labor, Department of Obstetrics, Friedrich-Schiller-University Jena, 07740 Jena, Germany. 6Departement de Biologie du Developpement, Institut Jacques Monod, Unités Mixtes de Recherche Centre National de la Recherche 7592, Univ. Paris 6 and Paris 7, Paris 75251 Paris, France. 7Department of Medical Microbiology and Immunology, Reproductive and Tumor Immunology Research Group of the Hungarian Academy of Sciences, Pecs University Medical School, Pecs 7643, Hungary. 8Departmento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428, Argentina. 9J.M.I. and M.T. contributed equally to this work. Correspondence should be addressed to P.C.A. (petra.arck@charite.de), S.M.B. (sandra.blois@charite.de) or G.A.R. (gabyrabi@ciudad.com.ar). | ||
| 536 | |a Detalles de la financiación: We thank E. Hagen, P. Moschansky and P. Busse for excellent technical assistance in generating this work. Pgr–/– mice were provided by J. Lydon (University of Texas). S.M.B., M.T., U.R.M., J.S.-B. and P.C.A. are part of the Embryo Implantation Control Network of Excellence, co-financed by the European Commission throughout the FP6 framework program Life Science, Genomics and Biotechnology for Health. S.M.B is a fellow of the Habilitation program at the Charité, University Medicine Berlin. J.M.I., M.A.T. and G.A.B. are fellows of the CONICET. A.S.O. is supported by the Turkish Higher Education Council. M.G. was supported by the German Academic Exchange Program. This work was supported by research grants from the German Research Foundation (AR232/8–1, P.C.A.), the Drs. Graute and Graute-Oppermann Foundation (P.C.A.), the Charité (P.C.A.), the Sales Foundation/CONICET Program (G.A.R.), the Mizutani Foundation for Glycoscience (G.A.R.), the Cancer Research Institute (E. Shephard Investigator; G.A.R.), the John Simon Guggenheim Memorial Foundation (G.A.R.), the Argentina National Agency for Promotion of Science and Technology (PICT 2003–05–13787; G.A.R.), the University of Buenos Aires (M091; G.A.R.) and the Association pour la Recherche contre le Cancer and Ligue contre le cancer, comité de Paris (F.P.). We are indebted to S. Cookson, B. Huppertz, D.A. Clark, H.F. Rosenberg and several anonymous reviewers for helpful feedback and constructive comments on this article. | ||
| 593 | |a University Medicine Berlin, Biomedical Research Building, Campus Virchow, Augustenburger Platz 1, Berlin 13353, Germany | ||
| 593 | |a Laboratorio de Inmunopatología, Instituto de Biología Y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Cientificas Y Tecnicas (CONICET), Vuelta de Obligado 2490, Buenos Aires C1428, Argentina | ||
| 593 | |a Department of Medicine, Division of Hepatology, Gastroenterology, and Endocrinology, University Medicine Berlin, Berlin 13353, Germany | ||
| 593 | |a Departamento de Bioquímica Y Biología Molecular, Facultad de Medicina, Universidad de Granada, Granada 18012, Spain | ||
| 593 | |a Placenta-Labor, Department of Obstetrics, Friedrich-Schiller-University Jena, 07740 Jena, Germany | ||
| 593 | |a Departement de Biologie du Developpement, Institut Jacques Monod, Univ. Paris 6 and Paris 7, Paris 75251 Paris, France | ||
| 593 | |a Department of Medical Microbiology and Immunology, Hungarian Academy of Sciences, Pecs University Medical School, Pecs 7643, Hungary | ||
| 593 | |a Departmento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires C1428, Argentina | ||
| 690 | 1 | 0 | |a GALECTIN 1 |
| 690 | 1 | 0 | |a ANIMAL CELL |
| 690 | 1 | 0 | |a ANIMAL EXPERIMENT |
| 690 | 1 | 0 | |a ARTICLE |
| 690 | 1 | 0 | |a CONTROLLED STUDY |
| 690 | 1 | 0 | |a CYTOKINE RELEASE |
| 690 | 1 | 0 | |a DENDRITIC CELL |
| 690 | 1 | 0 | |a FETOPLACENTAL UNIT |
| 690 | 1 | 0 | |a FETUS WASTAGE |
| 690 | 1 | 0 | |a IMMUNOREGULATION |
| 690 | 1 | 0 | |a IN VIVO CULTURE |
| 690 | 1 | 0 | |a MOUSE |
| 690 | 1 | 0 | |a NONHUMAN |
| 690 | 1 | 0 | |a PREGNANCY DISORDER |
| 690 | 1 | 0 | |a PRIORITY JOURNAL |
| 690 | 1 | 0 | |a PROTEIN BINDING |
| 690 | 1 | 0 | |a PROTEIN EXPRESSION |
| 690 | 1 | 0 | |a REGULATORY T LYMPHOCYTE |
| 690 | 1 | 0 | |a ANIMALS |
| 690 | 1 | 0 | |a CD4-POSITIVE T-LYMPHOCYTES |
| 690 | 1 | 0 | |a FEMALE |
| 690 | 1 | 0 | |a GALECTIN 1 |
| 690 | 1 | 0 | |a GENE EXPRESSION REGULATION, DEVELOPMENTAL |
| 690 | 1 | 0 | |a HISTOCOMPATIBILITY, MATERNAL-FETAL |
| 690 | 1 | 0 | |a IMMUNE TOLERANCE |
| 690 | 1 | 0 | |a INTERLEUKIN-2 RECEPTOR ALPHA SUBUNIT |
| 690 | 1 | 0 | |a MICE |
| 690 | 1 | 0 | |a MICE, TRANSGENIC |
| 690 | 1 | 0 | |a POLYSACCHARIDES |
| 690 | 1 | 0 | |a PREGNANCY |
| 690 | 1 | 0 | |a PREGNANCY, ANIMAL |
| 690 | 1 | 0 | |a T-LYMPHOCYTES, REGULATORY |
| 690 | 1 | 0 | |a TRANSPLANTATION, HOMOLOGOUS |
| 690 | 1 | 0 | |a MUS |
| 700 | 1 | |a Ilarregui, J.M. | |
| 700 | 1 | |a Tometten, M. | |
| 700 | 1 | |a Garcia, M. | |
| 700 | 1 | |a Orsal, A.S. | |
| 700 | 1 | |a Cordo-Russo, R. | |
| 700 | 1 | |a Toscano, M.A. | |
| 700 | 1 | |a Bianco, G.A. | |
| 700 | 1 | |a Kobelt, P. | |
| 700 | 1 | |a Handjiski, B. | |
| 700 | 1 | |a Tirado, I. | |
| 700 | 1 | |a Markert, U.R. | |
| 700 | 1 | |a Klapp, B.F. | |
| 700 | 1 | |a Poirier, F. | |
| 700 | 1 | |a Szekeres-Bartho, J. | |
| 700 | 1 | |a Rabinovich, G.A. | |
| 700 | 1 | |a Arck, P.C. | |
| 773 | 0 | |d 2007 |g v. 13 |h pp. 1450-1457 |k n. 12 |p Nat. Med. |x 10788956 |w (AR-BaUEN)CENRE-6218 |t Nature Medicine | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-36849020587&doi=10.1038%2fnm1680&partnerID=40&md5=80b5cc56b2148964d1fb09ab70453e24 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1038/nm1680 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_10788956_v13_n12_p1450_Blois |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10788956_v13_n12_p1450_Blois |y Registro en la Biblioteca Digital |
| 961 | |a paper_10788956_v13_n12_p1450_Blois |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 67154 | ||