Mechanism of product release in NO detoxification from Mycobacterium tuberculosis truncated hemoglobin N
The capability of Mycobacterium tuberculosis to rest in latency in the infected organism appears to be related to the disposal of detoxification mechanisms, which converts the nitric oxide (NO) produced by macrophages during the initial growth infection stage into a nitrate anion. Such a reaction ap...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , , , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2008
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 08016caa a22012377a 4500 | ||
|---|---|---|---|
| 001 | PAPER-6093 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518203546.0 | ||
| 008 | 190411s2008 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-38949211777 | |
| 024 | 7 | |2 cas |a heme, 14875-96-8; hemoglobin, 9008-02-0; nitric oxide, 10102-43-9; nitrite, 14797-65-0; oxygen, 7782-44-7; Anions; Hemoglobins, Abnormal; Ligands; Nitrates; Nitric Oxide, 10102-43-9; Water, 7732-18-5; hemoglobins N, 9035-12-5 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a JACSA | ||
| 100 | 1 | |a Martí, M.A. | |
| 245 | 1 | 0 | |a Mechanism of product release in NO detoxification from Mycobacterium tuberculosis truncated hemoglobin N |
| 260 | |c 2008 | ||
| 270 | 1 | 0 | |m Guallar, V.; ICREA, Computacional Biology Program, Barcelona Supercomputing Center, Barcelona 08028, Spain; email: victor.guallar@bsc.es |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Bloom, B.R., (1994) Tuberculosis: Pathogenesis, Protection and Control, , ASM Press: Washington, DC | ||
| 504 | |a MacMicking, J.D., North, R.J., LaCourse, R., Mudgett, J.S., Shah, S.K., Nathan, C.F., (1997) Proc. Natl. Acad. Sci. U.S.A, 94, p. 5243 | ||
| 504 | |a Shiloh, M.U., Nathan, C.F., (2000) Curr. Opin. Microbiol, 3, p. 35 | ||
| 504 | |a Couture, M., Yeh, S.R., Wittenberg, B.A., Wittenberg, J.B., Ouellet, Y., Rousseau, D.L., Guertin, M., (1999) Proc. Natl. Acad. Sci. U.S.A, 96, p. 11223 | ||
| 504 | |a Ouellet, H., Ouellet, Y., Richard, C., Labarre, M., Wittenberg, B., Wittenberg, J., Guertin, M., (2002) Proc. Natl. Acad. Sci. U.S.A, 99, p. 5902 | ||
| 504 | |a Pathania, R., Navani, N.K., Gardner, A.M., Gardner, P.R., Dikshit, K.L., (2002) Mol. Microbiol, 45, p. 1303 | ||
| 504 | |a Moens, L., Vanfleteren, J., van de Peer, Y., Peeters, K., Kapp, O., Czeluzniak, J., Goodman, M., Vinogradov, S., (1996) Mol. Biol. Evol, 13, p. 324 | ||
| 504 | |a Pesce, A., Couture, M., Dewilde, S., Guertin, M., Yamauchi, K., Ascenzi, P., Moens, L., Bolognesi, M., (2000) EMBO J, 19, p. 2424 | ||
| 504 | |a Milani, M., Pesce, A., Nardini, M., Ouellet, H., Ouellet, Y., Dewilde, S., Bocedi, A., Bolognesi, M., (2005) J. Inorg. Biochem, 99, p. 97 | ||
| 504 | |a Milani, M., Pesce, A., Ouellet, Y., Ascenzi, P., Guertin, M., Bolognesi, M., (2001) EMBO J, 20, p. 3902 | ||
| 504 | |a Milani, M., Pesce, A., Ouellet, Y., Dewilde, S., Friedman, J.M., Ascenzi, P., Guertin, M., Bolognesi, M., (2004) J. Biol. Chem, 279, p. 21520 | ||
| 504 | |a Crespo, A., Martí, M.A., Kalko, S.G., Morreale, A., Orozco, M., Gelpí, J.L., Luque, F.J., Estrin, D.A., (2005) J. Am. Chem. Soc, 127, p. 4433 | ||
| 504 | |a Bidon-Chanal, A., Martí, M.A., Crespo, A., Milani, M., Orozco, M., Bolognesi, M., Luque, F.J., Estrin, D.A., (2006) Proteins, 64, p. 457 | ||
| 504 | |a Bidon-Chanal, A., Martí, M.A., Estrin, D.A., Luque, F.J., (2007) J. Am. Chem. Soc, 129, p. 6782 | ||
| 504 | |a Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., (1983) J. Chem. Phys, 79, p. 926 | ||
| 504 | |a Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.R., Cheatham III, T.E., DeBolt, S., Ferguson, D., Kollman, P., (1995) Comp. Phys. Commun, 91, p. 1 | ||
| 504 | |a Jarzynski, C., (1997) Phys. Rev. Lett, 78, p. 2690 | ||
| 504 | |a (2005) Qsite, , 4.0; Schrodinger, LLC: New York | ||
| 504 | |a Becke, A.D., (1988) Phys. Rev. A, 38, p. 3098 | ||
| 504 | |a Lee, C., Yang, W., Parr, R.G., (1988) Phys. Rev. B, 37, p. 785 | ||
| 504 | |a Hay, P.J., Wadt, W.R., (1985) J. Chem. Phys, 82, p. 270 | ||
| 504 | |a Kaminski, G.A., Friesner, R.A., Tirado-Rives, J., Jorgensen, W.L., (2001) J. Phys. Chem. B, 105, p. 6474 | ||
| 504 | |a Friesner, R.A., Guallar, V., (2005) Annu. Rev. Phys. Chem, 56, p. 389 | ||
| 504 | |a (2005) Jaguar, , 6.5; Schrodinger, LLC: New York | ||
| 504 | |a Kleywegt, G.J., Jones, T.A., (1994) Acta Crystallogr, D50, p. 1178 | ||
| 504 | |a Borrelli, K.W., Vitalis, A., Alcantara, R., Guallar, V., (2005) J. Chem. Theory Comput, 1, p. 1304 | ||
| 520 | 3 | |a The capability of Mycobacterium tuberculosis to rest in latency in the infected organism appears to be related to the disposal of detoxification mechanisms, which converts the nitric oxide (NO) produced by macrophages during the initial growth infection stage into a nitrate anion. Such a reaction appears to be associated with the truncated hemoglobin N (trHbN). Even though previous experimental and theoretical studies have examined the pathways used by NO and O2 to access the heme cavity, the eggression pathway of the nitrate anion is still a challenging question. In this work we present results obtained by means of classical and quantum chemistry simulations that show that trHbN is able to release rapidly the nitrate anion using an eggression pathway other than those used for the entry of both O2 and NO and that its release is promoted by hydration of the heme cavity. These results provide a detailed understanding of the molecular basis of the NO detoxification mechanism used by trHbN to guarantee an efficient NO detoxification and thus warrant survival of the microorganism under stress conditions. © 2008 American Chemical Society. |l eng | |
| 593 | |a Departamento de Quimica Inorganica,Analitica Y Quimica Fisica/INQUIMAE-CONICET, Facultad de Ciencias Exactas Y Naturales, Pabellón 2, Buenos Aires, C1428EHA, Argentina | ||
| 593 | |a Departament de Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain | ||
| 593 | |a Department of Physiology and Biophysics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, United States | ||
| 593 | |a ICREA, Computacional Biology Program, Barcelona Supercomputing Center, Barcelona 08028, Spain | ||
| 690 | 1 | 0 | |a EGGRESSION PATHWAY |
| 690 | 1 | 0 | |a HEME CAVITY |
| 690 | 1 | 0 | |a MYCOBACTERIUM TUBERCULOSIS |
| 690 | 1 | 0 | |a DETOXIFICATION |
| 690 | 1 | 0 | |a HEMOGLOBIN |
| 690 | 1 | 0 | |a HYDRATION |
| 690 | 1 | 0 | |a NITRIC OXIDE |
| 690 | 1 | 0 | |a QUANTUM CHEMISTRY |
| 690 | 1 | 0 | |a BACTERIA |
| 690 | 1 | 0 | |a HEME |
| 690 | 1 | 0 | |a HEMOGLOBIN |
| 690 | 1 | 0 | |a HEMOGLOBIN N |
| 690 | 1 | 0 | |a NITRIC OXIDE |
| 690 | 1 | 0 | |a NITRITE |
| 690 | 1 | 0 | |a OXYGEN |
| 690 | 1 | 0 | |a UNCLASSIFIED DRUG |
| 690 | 1 | 0 | |a ARTICLE |
| 690 | 1 | 0 | |a BACTERIAL GROWTH |
| 690 | 1 | 0 | |a HYDRATION |
| 690 | 1 | 0 | |a LATENT PERIOD |
| 690 | 1 | 0 | |a MACROPHAGE |
| 690 | 1 | 0 | |a MOLECULAR DYNAMICS |
| 690 | 1 | 0 | |a MOLECULAR MECHANICS |
| 690 | 1 | 0 | |a MYCOBACTERIUM TUBERCULOSIS |
| 690 | 1 | 0 | |a NONHUMAN |
| 690 | 1 | 0 | |a QUANTUM CHEMISTRY |
| 690 | 1 | 0 | |a QUANTUM MECHANICS |
| 690 | 1 | 0 | |a REACTION ANALYSIS |
| 690 | 1 | 0 | |a SIMULATION |
| 690 | 1 | 0 | |a STRESS |
| 690 | 1 | 0 | |a ANIONS |
| 690 | 1 | 0 | |a BINDING SITES |
| 690 | 1 | 0 | |a COMPUTER SIMULATION |
| 690 | 1 | 0 | |a HEMOGLOBINS, ABNORMAL |
| 690 | 1 | 0 | |a LIGANDS |
| 690 | 1 | 0 | |a MODELS, MOLECULAR |
| 690 | 1 | 0 | |a MYCOBACTERIUM TUBERCULOSIS |
| 690 | 1 | 0 | |a NITRATES |
| 690 | 1 | 0 | |a NITRIC OXIDE |
| 690 | 1 | 0 | |a PROTEIN BINDING |
| 690 | 1 | 0 | |a PROTEIN STRUCTURE, TERTIARY |
| 690 | 1 | 0 | |a WATER |
| 700 | 1 | |a Bidon-Chanal, A. | |
| 700 | 1 | |a Crespo, A. | |
| 700 | 1 | |a Yeh, S.-R. | |
| 700 | 1 | |a Guallar, V. | |
| 700 | 1 | |a Luque, F.J. | |
| 700 | 1 | |a Estrin, D.A. | |
| 773 | 0 | |d 2008 |g v. 130 |h pp. 1688-1693 |k n. 5 |p J. Am. Chem. Soc. |x 00027863 |w (AR-BaUEN)CENRE-19 |t Journal of the American Chemical Society | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-38949211777&doi=10.1021%2fja076853%2b&partnerID=40&md5=c827f0250d701993d3e12ca1c8a5d22a |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1021/ja076853+ |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_00027863_v130_n5_p1688_Marti |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00027863_v130_n5_p1688_Marti |y Registro en la Biblioteca Digital |
| 961 | |a paper_00027863_v130_n5_p1688_Marti |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 963 | |a VARI | ||
| 999 | |c 67046 | ||