Bond or cage effect: How nitrophorins transport and release nitric oxide

Most blood-sucking insects possess salivary proteins which, upon injection into the victim's tissue, help them improve their feeding. One group of these salivary proteins takes advantage of the vasodilator properties of NO to perform this task. These proteins are the so-called nitrophorins (NPs...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Martí, M.A
Otros Autores: González Lebrero, M.C, Roitberg, A.E, Estrin, D.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2008
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11479caa a22014897a 4500
001 PAPER-6092
003 AR-BaUEN
005 20230518203546.0
008 190411s2008 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-38949211023 
024 7 |2 cas  |a iron, 14093-02-8, 53858-86-9, 7439-89-6; nitric oxide, 10102-43-9; Hemeproteins; Nitric Oxide, 10102-43-9; Salivary Proteins; nitrophorin 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JACSA 
100 1 |a Martí, M.A. 
245 1 0 |a Bond or cage effect: How nitrophorins transport and release nitric oxide 
260 |c 2008 
270 1 0 |m Martí, M.A.; Departamento de Química Inorgánica, Analítica, Y Química Fisica, Facultad de Ciencias Exactas Y Naturales, C1428EHA, Buenos Aires, Argentina; email: marcelo@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Palmer, R.M.J., Ferrige, A.G., Moncada, S., (1987) Nature, 327 (6122), pp. 524-526 
504 |a Moncada, S., Palmer, R.M.J., Higgs, E.A., (1991) Pharm. Rev, 43 (2), pp. 109-142 
504 |a Marietta, M.A., (1993) J. Biol. Chem, 268 (17), pp. 12231-12234 
504 |a Alderton, W.K., Cooper, C.E., Knowles, R.G., (2001) Biochem. J, 357 (3), pp. 593-615 
504 |a Denninger, J.W., Marietta, M.A., (1999) Biochim. Biophys. Acta, 1411 (2-3), pp. 334-350 
504 |a Laverman, L.E., Ford, P.C., (2001) J. Am. Chem. Soc, 123 (47), pp. 11614-11622 
504 |a Ford, P.C., Fernandez, B.O., Lim, M.D., (2005) Chem. Rev, 105 (6), pp. 2439-2455 
504 |a Radi, R., (2004) Proc. Natl. Acad. Sci. U.S.A, 101 (12), pp. 4003-4008 
504 |a Forman, H.J., Torres, M., Fukuto, J., (2002) Mol. Cell. Biochem, 234-235, pp. 49-62 
504 |a Montfort, W.R., Weichsel, A., Andersen, J.F., (2000) Biochim. Biophys. Acta, 1482 (1-2), pp. 110-118 
504 |a Ribeiro, J.M.C., Hazzard, J.M.H., Nussenzveig, R.H., Champagne, D.E., Walker, F.A., (1993) Science, 260 (5107), pp. 539-541 
504 |a Ascenzi, P., Nardini, M., Bolognesi, M., Montfort, W.R., (2002) Bioch. Mol. Bol. Educ, 30 (1), pp. 68-71 
504 |a Rassi Jr., A., Rassi, A., Little, W.C., (2000) Clin. Card, 23 (12), pp. 883-889 
504 |a Kirchhoff, L.V., (1993) New. Eng. J. Med, 329 (9), pp. 639-644 
504 |a Beard, C.B., Pye, G., Steurer, F.J., Rodriguez, R., Campman, R., Peterson, A.T., Ramsey, J., Robinson, L.E., (2003) Emerg. Inf. Dis, 9 (1), pp. 103-105 
504 |a Champagne, D.E., Nussenzveig, R.H., Ribeiro, J.M.C., (1995) J. Biol. Chem, 270 (15), pp. 8691-8695 
504 |a Andersen, J.F., Ding, X.D., Balfour, C., Shokhireva, T.K., Champagne, D.E., Walker, F.A., Montfort, W.R., (2000) Biochemistry, 39 (33), pp. 10118-10131 
504 |a Andersen, J.F., Montfort, W.R., (2000) J. Biol. Chem, 275 (39), pp. 30496-30503 
504 |a Andersen, J.F., Weichsel, A., Balfour, C.A., Champagne, D.E., Montfort, W.R., (1998) Structure, 6 (10), pp. 1315-1327 
504 |a Weichsel, A., Andersen, J.F., Champagne, D.E., Walker, F.A., Montfort, W.R., (1998) Nat. Struct. Biol, 5 (4), pp. 304-309 
504 |a Andersen, J.F., Champagne, D.E., Weichsel, A., Ribeiro, J.M.C., Balfour, C.A., Dress, V., Montfort, W.R., (1997) Biochemistry, 36 (15), pp. 4423-4428 
504 |a Ribeiro, J.M.C., Nussenzveig, R.H., (1993) FEBS Lett, 330 (2), pp. 165-168 
504 |a Flower, D.R., North, A.C.T., Sansom, C.E., (2000) Biochim. Biophys. Acta, 1482 (1-2), pp. 9-24 
504 |a Kondrashov, D.A., Roberts, S.A., Weichsel, A., Montfort, W.R., (2004) Biochemistry, 43 (43), pp. 13637-13647 
504 |a Maes, E.M., Weichsel, A., Andersen, J.F., Shepley, D., Montfort, W.R., (2004) Biochemistry, 43 (21), pp. 6679-6690 
504 |a Shokhireva, T.K., Weichsel, A., Smith, K.M., Berry, R.E., Shokhirev, N.V., Balfour, C.A., Zhang, H., Walker, F.A., (2007) Inorg. Chem, 46 (6), pp. 2041-2056 
504 |a Maes, E.M., Roberts, S.A., Weichsel, A., Montfort, W.R., (2005) Biochemistry, 44 (38), pp. 12690-12699 
504 |a Sharma, V.S., Traylor, T.G., Gardiner, R., Mizukami, H., (1987) Biochemistry, 26 (13), pp. 3837-3843 
504 |a Enemark, J.H., Feltham, R.D., (1974) Coord. Chem. Rev, 13, pp. 339-406 
504 |a Walker, F.A., (2005) J. Inorg. Biochem, 99 (1), pp. 216-236 
504 |a Kondrashov, D.A., Montfort, W.R., (2007) J. Phys. Chem. B 
504 |a Scott, E.E., Gibson, Q.H., Olson, J.S., (2001) J. Biol. Chem, 276 (7), pp. 5177-5188 
504 |a Marti, M.A., Crespo, A., Capece, L., Boechi, L., Bikiel, D.E., Scherlis, D.A., Estrin, D.A., (2006) J. Inorg. Biochem, 100 (4), pp. 761-770 
504 |a Menyhard, D.K., Keseru, G.M., (2005) FEBS Lett, 579 (24), pp. 5392-5398 
504 |a Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., DiNola, A., Haak, J.R., (1984) J. Chem. Phys, 81, pp. 3684-3690 
504 |a Van Gunsteren, W.F., Berendsen, H.J.C., (1990) Angew. Chem., Int. Ed. Engl, 29 (9), pp. 992-1023 
504 |a Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C., (1977) J. Comput. Phys, 23, pp. 327-341 
504 |a Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., (2006) Proteins, 65 (3), pp. 712-725 
504 |a Bikiel, D.E., Boechi, L., Capece, L., Crespo, A., De Biase, P.M., Di Lella, S., Gonzalez Lebrero, M.C., Estrin, D.A., (2006) PCCP, 8 (48), pp. 5611-5628 
504 |a Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham Iii, T.E., DeBolt, S., Ferguson, D., Kollman, P., (1995) Comput. Phys. Commun, 91 (1-3), pp. 1-41 
504 |a Crespo, A., Marti, M.A., Estrin, D.A., Roitberg, A.E., (2005) J. Am. Chem. Soc, 127 (19), pp. 6940-6941 
504 |a Xiong, H., Crespo, A., Marti, M., Estrin, D., Roitberg, A.E., (2006) Theor. Chem. Acc, 116 (1-3), pp. 338-346 
504 |a Bidon-Chanal, A., Marti, M.A., Crespo, A., Milani, M., Orozco, M., Bolognesi, M., Luque, F.J., Estrin, D.A., (2006) Proteins 
504 |a Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., (2002) J. Phys.: Condens. Matter, 14 (11), pp. 2745-2779 
504 |a Crespo, A., Scherlis, D.A., Marti, M.A., Ordejón, P., Roitberg, A.E., Estrin, D.A., (2003) J. Phys. Chem. B, 107 (49), pp. 13728-13736 
504 |a Marti, M.A., Capece, L., Crespo, A., Doctorovich, F., Estrin, D.A., (2005) J. Am. Chem. Soc, 127 (21), pp. 7721-7728 
504 |a Capece, L., Marti, M.A., Crespo, A., Doctorovich, F., Estrin, D.A., (2006) J. Am. Chem. Soc, 128 (38), pp. 12455-12461 
504 |a Marti, M.A., Scherlis, D.A., Doctorovich, F.A., Ordejon, P., Estrin, D.A., (2003) J. Biol. Inorg. Chem, 8 (6), pp. 595-600 
504 |a Crespo, A., Marti, M.A., Kalko, S.G., Morreale, A., Orozco, M., Gelpi, J.L., Luque, F.J., Estrin, D.A., (2005) J. Am. Chem. Soc, 127 (12), pp. 4433-4444 
504 |a Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett, 77 (18), pp. 3865-3868 
504 |a Eichinger, M., Tavan, P., Hutter, J., Parrinello, M., (1999) J. Chem. Phys, 110 (21), pp. 10452-10467 
504 |a Rovira, C., Schulze, B., Eichinger, M., Evanseck, J.D., Parrinello, M., (2001) Biophys. J, 81 (1), pp. 435-445 
504 |a Nienhaus, K., Maes, E.M., Weichsel, A., Montfort, W.R., Nienhaus, G.U., (2004) J. Biol. Chem, 279 (38), pp. 39401-39407 
520 3 |a Most blood-sucking insects possess salivary proteins which, upon injection into the victim's tissue, help them improve their feeding. One group of these salivary proteins takes advantage of the vasodilator properties of NO to perform this task. These proteins are the so-called nitrophorins (NPs). NPs are heme proteins that store and transport NO, which, when released in the victim's tissue, produces vasodilation and inhibition of blood coagulation. It has been proposed that NO binds tightly to NP at a low pH of around 5.6 and that once NPs are injected in the victims tissue, at a pH of approximately 7.4, a conformational change occurs which lowers NO affinity, allowing it to be released. In this work we have studied the NO release mechanism of NP4 at a molecular level using state of the art computer simulation techniques. We have used molecular dynamics (MD) simulations to study NP4 conformational dynamics at both pH values 5.6 and 7.4 and computed the corresponding free energy profile for NO release using a multiple steering molecular dynamics scheme. We also have used hybrid quantum mechanical/molecular mechanics (QM/MM) techniques to analyze the heme-NO structure and the Fe-NO bond strength in the different NP4 conformations. Our results provide the molecular basis to explain that NO escape from NP4 is determined by differential NO migration rates and not by a difference in the Fe-NO bond strength. In contrast to most heme proteins that control ligand affinity by modulating the bond strength to the iron, NP4 has evolved a cage mechanism that traps the NO at low pH and releases it upon cage opening when the pH rises. © 2008 American Chemical Society.  |l eng 
593 |a Departamento de Química Inorgánica, Analítica, Y Química Fisica, Facultad de Ciencias Exactas Y Naturales, C1428EHA, Buenos Aires, Argentina 
593 |a Quantum Theory and Project, Department of Chemistry, University of Florida, Gainesville, FL 32611-8435, United States 
690 1 0 |a BLOOD-SUCKING INSECTS 
690 1 0 |a NITROPHORINS 
690 1 0 |a SALIVARY PROTEINS 
690 1 0 |a VASODILATOR PROPERTIES 
690 1 0 |a BLOOD 
690 1 0 |a COAGULATION 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a NITROGEN COMPOUNDS 
690 1 0 |a PROTEINS 
690 1 0 |a TISSUE 
690 1 0 |a BIODIVERSITY 
690 1 0 |a HEMOPROTEIN 
690 1 0 |a IRON 
690 1 0 |a LIGAND 
690 1 0 |a NITRIC OXIDE 
690 1 0 |a NITROPHORIN 
690 1 0 |a SALIVA PROTEIN 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ACIDITY 
690 1 0 |a ALKALINITY 
690 1 0 |a ARTICLE 
690 1 0 |a BINDING AFFINITY 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a CONFORMATIONAL TRANSITION 
690 1 0 |a ENERGY 
690 1 0 |a FEEDING 
690 1 0 |a INSECT 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a NONHUMAN 
690 1 0 |a PROTEIN CONFORMATION 
690 1 0 |a PROTEIN FUNCTION 
690 1 0 |a VALIDATION PROCESS 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a HEMEPROTEINS 
690 1 0 |a HYDROGEN-ION CONCENTRATION 
690 1 0 |a MODELS, MOLECULAR 
690 1 0 |a NITRIC OXIDE 
690 1 0 |a PROTEIN BINDING 
690 1 0 |a PROTEIN STRUCTURE, TERTIARY 
690 1 0 |a SALIVARY PROTEINS 
700 1 |a González Lebrero, M.C. 
700 1 |a Roitberg, A.E. 
700 1 |a Estrin, D.A. 
773 0 |d 2008  |g v. 130  |h pp. 1611-1618  |k n. 5  |p J. Am. Chem. Soc.  |x 00027863  |w (AR-BaUEN)CENRE-19  |t Journal of the American Chemical Society 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-38949211023&doi=10.1021%2fja075565a&partnerID=40&md5=c4c91fc8f30cdc17734299c2b7145be2  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/ja075565a  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00027863_v130_n5_p1611_Marti  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00027863_v130_n5_p1611_Marti  |y Registro en la Biblioteca Digital 
961 |a paper_00027863_v130_n5_p1611_Marti  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 67045