Control of dendritic cell maturation and function by triiodothyronine

Accumulating evidence indicates a functional crosstalk between immune and endocrine mechanisms in the modulation of innate and adaptive immunity. However, the impact of thyroid hormones (THs) in the initiation of adaptive immune responses has not yet been examined. Here we investigated the presence...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Mascanfroni, I.
Otros Autores: Montesinos, M.D.M, Susperreguy, S., Cervi, L., Ilarregui, J.M, Ramseyer, V.D, Masini-Repiso, A.M, Targovnik, H.M, Rabinovich, G.A, Pellizas, C.G
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2008
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 20084caa a22018497a 4500
001 PAPER-5986
003 AR-BaUEN
005 20230518203540.0
008 190411s2008 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-42049109284 
024 7 |2 cas  |a gamma interferon, 82115-62-6; interleukin 12, 138415-13-1; liothyronine, 6138-47-2, 6893-02-3; protein, 67254-75-5; Interleukin-12, 187348-17-0; Receptors, Thyroid Hormone; Triiodothyronine, 6893-02-3 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a FAJOE 
100 1 |a Mascanfroni, I. 
245 1 0 |a Control of dendritic cell maturation and function by triiodothyronine 
260 |c 2008 
270 1 0 |m Pellizas, C. G.; CIBICI-CONICET, Departamento de Bioquímica Clínica, Ciudad Universitaria, Haya de la Torre Esq. Medina Allende, 5000 Córdoba, Argentina; email: claudia@mail.fcq.unc.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Fabris, N., Mocchegiani, E., Provinciali, M., Pituitary-thyroid axis and immune system: A reciprocal neuroendocrine-immune interaction (1995) Horm. Res, 43, pp. 29-38 
504 |a Yen, P.M., Physiological and molecular basis of thyroid hormone action (2001) Physiol. Rev, 81, pp. 1097-1142 
504 |a Foster, M.P., Jensen, E.R., Montecino-Rodriguez, E., Leathers, H., Horseman, N., Dorshkind, K., Humoral and cell-mediated immunity in mice with genetic deficiencies of prolactin, growth hormone, insulin-like growth factor-I, and thyroid hormone (2000) Clin. Immunol, 96, pp. 140-149 
504 |a Dorshkind, K., Horseman, N.D., Anterior pituitary hormones, stress, and immune system homeostasis (2001) Bioessays, 23, pp. 288-294 
504 |a Klecha, A.J., Genaro, A.M., Gorelik, G., Barreiro Arcos, M.L., Magali Silberman, D., Schuman, M., Garcia, S.I., Cremaschi, G.A., Integrative study of hypothalamus-pituitary-thyroid-immune system interaction: Thyroid hormone-mediated modulation of lymphocyte activity through the protein kinase C signaling pathway (2006) J. Endocrinol, 189, pp. 45-55 
504 |a Dorshkind, K., Horseman, N.D., The roles of prolactin, growth hormone, insulin-like growth factor-I, and thyroid hormones in lymphocyte development and function: Insights from genetic models of hormone and hormone receptor deficiency (2000) Endocr. Rev, 21, pp. 292-312 
504 |a Wang, H.C., Klein, J.R., Immune function of thyroid stimulating hormone and receptor (2001) Crit. Rev. Immunol, 21, pp. 323-337 
504 |a Davis, P.J., Davis, F.B., Cody, V., Membrane receptors mediating thyroid hormone action (2005) Trends Endocrinol. Metab, 16, pp. 429-435 
504 |a Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C., Amigorena, S., Antigen presentation and T cell stimulation by dendritic cells (2002) Annu. Rev. Immunol, 20, pp. 621-667 
504 |a Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.J., Pulendran, B., Palucka, K., Immunobiology of dendritic cells (2000) Annu. Rev. Immunol, 18, pp. 767-811 
504 |a Hewison, M., Freeman, L., Hughes, S.V., Evans, K.N., Bland, R., Eliopoulos, A.G., Kilby, M.D., Chakraverty, R., Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells (2003) J. Immunol, 170, pp. 5382-5390 
504 |a Rutella, S., Danese, S., Leone, G., Tolerogenic dendritic cells: Cytokine modulation comes of age (2006) Blood, 108, pp. 1435-1440 
504 |a Bottero, V., Withoff, S., Verma, I.M., NF-κB and the regulation of hematopoiesis (2006) Cell Death Differ, 13, pp. 785-797 
504 |a Bassett, J.H., Harvey, C.B., Williams, G.R., Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions (2003) Mol. Cell. Endocrinol, 213, pp. 1-11 
504 |a Yen, P.M., Ando, S., Feng, X., Liu, Y., Maruvada, P., Xia, X., Thyroid hormone action at the cellular, genomic and target gene levels (2006) Mol. Cell. Endocrinol, 246, pp. 121-127 
504 |a D'Arezzo, S., Incerpi, S., Davis, F.B., Acconcia, F., Marino, M., Farias, R.N., Davis, P.J., Rapid nongenomic effects of 3,5,3′-triiodo-L-thyronine on the intracellular pH of L-6 myoblasts are mediated by intracellular calcium mobilization and kinase pathways (2004) Endocrinology, 145, pp. 5694-5703 
504 |a Freeman, L., Hewison, M., Hughes, S.V., Evans, K.N., Hardie, D., Means, T.K., Chakraverty, R., Expression of 11β-hydroxysteroid dehydrogenase type 1 permits regulation of glucocorticoid bioavailability by human dendritic cells (2005) Blood, 106, pp. 2042-2049 
504 |a Nahmod, K.A., Vermeulen, M.E., Raiden, S., Salamone, G., Gamberale, R., Fernandez-Calotti, P., Alvarez, A., Geffner, J.R., Control of dendritic cell differentiation by angiotensin II (2003) FASEB J, 17, pp. 491-493 
504 |a Delgado, M., Reduta, A., Sharma, V., Ganea, D., VIP/PACAP oppositely affects immature and mature dendritic cell expression of CD80/CD86 and the stimulatory activity for CD4+ T cells (2004) J. Leukoc. Biol, 75, pp. 1122-1130 
504 |a Mooij, P., Simons, P.J., de Haan-Meulman, M., de Wit, H.J., Drexhage, H.A., Effect of thyroid hormones and other iodinated compounds on the transition of monocytes into veiled/dendritic cells: Role of granulocyte-macrophage colonystimulating factor, tumour-necrosis factor-α and interleukin-6 (1994) J. Endocrinol, 140, pp. 503-512 
504 |a Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S., Steinman, R.M., Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor (1992) J. Exp. Med, 176, pp. 1693-1702 
504 |a Montesinos, M.M., Pellizas, C.G., Velez, M.L., Susperreguy, S., Masini-Repiso, A.M., Coleoni, A.H., Thyroid hormone receptor β1 gene expression is increased by dexamethasone at transcriptional level in rat liver (2006) Life Sci, 78, pp. 2584-2594 
504 |a Ausubel, L.J., Kwan, C.K., Sette, A., Kuchroo, V., Hafler, D.A., Complementary mutations in an antigenic peptide allow for cross-reactivity of autoreactive T-cell clones (1996) Proc. Natl. Acad. Sci. U. S. A, 93, pp. 15317-15322 
504 |a Chomczynski, P., Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction (1987) Anal. Biochem, 162, pp. 156-159 
504 |a Kreuzer, K.A., Lass, U., Landt, O., Nitsche, A., Laser, J., Ellerbrok, H., Pauli, G., Schmidt, C.A., Highly sensitive and specific fluorescence reverse transcription-PCR assay for the pseudogene-free detection of β-actin transcripts as quantitative reference (1999) Clin. Chem, 45, pp. 297-300 
504 |a Schreiber, E., Matthias, P., Muller, M.M., Schaffner, W., Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells (1989) Nucleic Acids Res, 17, p. 6419 
504 |a Roelen, D.L., Schuurhuis, D.H., van den Boogaardt, D.E., Koekkoek, K., van Miert, P.P., van Schip, J.J., Laban, S., Claas, F.H., Prolongation of skin graft survival by modulation of the alloimmune response with alternatively activated dendritic cells (2003) Transplantation, 76, pp. 1608-1615 
504 |a Straw, A.D., MacDonald, A.S., Denkers, E.Y., Pearce, E.J., CD154 plays a central role in regulating dendritic cell activation during infections that induce Th1 or Th2 responses (2003) J. Immunol, 170, pp. 727-734 
504 |a Villa-Verde, D.M., Defresne, M.P., Vannier-dos-Santos, M.A., Dussault, J.H., Boniver, J., Savino, W., Identification of nuclear triiodothyronine receptors in the thymic epithelium (1992) Endocrinology, 131, pp. 1313-1320 
504 |a Meier-Heusler, S., Pernin, A., Liang, H., Goumaz, M.O., Burger, A.G., Meier, C.A., Quantitation of β1 triiodothyronine receptor mRNA in human tissues by competitive reverse transcription polymerase chain reaction (1995) J. Endocrinol. Invest, 18, pp. 767-773 
504 |a Bergh, J.J., Lin, H.Y., Lansing, L., Mohamed, S.N., Davis, F.B., Mousa, S., Davis, P.J., Integrin αVβ3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis (2005) Endocrinology, 146, pp. 2864-2871 
504 |a Moeller, L.C., Cao, X., Dumitrescu, A.M., Seo, H., Refetoff, S., Thyroid hormone mediated changes in gene expression can be initiated by cytosolic action of the thyroid hormone receptor β through the phosphatidylinositol 3-kinase pathway (2006) Nucl. Recept. Signal, 4, pp. e020 
504 |a Storey, N.M., Gentile, S., Ullah, H., Russo, A., Muessel, M., Erxleben, C., Armstrong, D.L., Rapid signaling at the plasma membrane by a nuclear receptor for thyroid hormone (2006) Proc. Natl. Acad. Sci. U. S. A, 103, pp. 5197-5201 
504 |a Siebler, T., Robson, H., Bromley, M., Stevens, D.A., Shalet, S.M., Williams, G.R., Thyroid status affects number and localization of thyroid hormone receptor expressing mast cells in bone marrow (2002) Bone, 30, pp. 259-266 
504 |a Alkemade, A., Vuijst, C.L., Unmehopa, U.A., Bakker, O., Vennstrom, B., Wiersinga, W.M., Swaab, D.F., Fliers, E., Thyroid hormone receptor expression in the human hypothalamus and anterior pituitary (2005) J. Clin. Endocrinol. Metab, 90, pp. 904-912 
504 |a Diekman, M.J., Zandieh Doulabi, B., Platvoet-Ter Schiphorst, M., Fliers, E., Bakker, O., Wiersinga, W.M., The biological relevance of thyroid hormone receptors in immortalized human umbilical vein endothelial cells (2001) J. Endocrinol, 168, pp. 427-433 
504 |a Zandieh Doulabi, B., Platvoet-ter Schiphorst, M., van Beeren, H.C., Labruyere, W.T., Lamers, W.H., Fliers, E., Bakker, O., Wiersinga, W.M., TRβ1 protein is preferentially expressed in the pericentral zone of rat liver and exhibits marked diurnal variation (2002) Endocrinology, 143, pp. 979-984 
504 |a Csaba, G., Sudar, F., Dobozy, O., Triiodothyronine receptors in lymphocytes of newborn and adult rats (1977) Horm. Metab. Res, 9, pp. 499-501 
504 |a Hager, G.L., Lim, C.S., Elbi, C., Baumann, C.T., Trafficking of nuclear receptors in living cells (2000) J. Steroid Biochem. Mol. Biol, 74, pp. 249-254 
504 |a Zhu, X.G., Hanover, J.A., Hager, G.L., Cheng, S.Y., Hormone-induced translocation of thyroid hormone receptors in living cells visualized using a receptor green fluorescent protein chimera (1998) J. Biol. Chem, 273, pp. 27058-27063 
504 |a Baumann, C.T., Maruvada, P., Hager, G.L., Yen, P.M., Nuclear cytoplasmic shuttling by thyroid hormone receptors. multiple protein interactions are required for nuclear retention (2001) J. Biol. Chem, 276, pp. 11237-11245 
504 |a Maruvada, P., Baumann, C.T., Hager, G.L., Yen, P.M., Dynamic shuttling and intranuclear mobility of nuclear hormone receptors (2003) J. Biol. Chem, 278, pp. 12425-12432 
504 |a Barish, G.D., Downes, M., Alaynick, W.A., Yu, R.T., Ocampo, C.B., Bookout, A.L., Mangelsdorf, D.J., Evans, R.M., A nuclear receptor atlas: Macrophage activation (2005) Mol. Endocrinol, 19, pp. 2466-2477 
504 |a Tao, Y., Yang, Y., Wang, W., Effect of all-trans-retinoic acid on the differentiation, maturation and functions of dendritic cells derived from cord blood monocytes (2006) FEMS Immunol. Med. Microbiol, 47, pp. 444-450 
504 |a Jakobsen, M.A., Petersen, R.K., Kristiansen, K., Lange, M., Lillevang, S.T., Peroxisome proliferator-activated receptor α, δ, γ1 and γ2 expressions are present in human monocyte-derived dendritic cells and modulate dendritic cell maturation by addition of subtype-specific ligands (2006) Scand. J. Immunol, 63, pp. 330-337 
504 |a Nalbandian, G., Paharkova-Vatchkova, V., Mao, A., Nale, S., Kovats, S., The selective estrogen receptor modulators, tamoxifen and raloxifene, impair dendritic cell differentiation and activation (2005) J. Immunol, 175, pp. 2666-2675 
504 |a Bagriacik, E.U., Klein, J.R., The thyrotropin (thyroid-stimulating hormone) receptor is expressed on murine dendritic cells and on a subset of CD45RBhigh lymph node T cells: Functional role for thyroid-stimulating hormone during immune activation (2000) J. Immunol, 164, pp. 6158-6165 
504 |a Komi, J., Lassila, O., Nonsteroidal anti-estrogens inhibit the functional differentiation of human monocyte-derived dendritic cells (2000) Blood, 95, pp. 2875-2882 
504 |a Hagihara, M., Li, C., Gansuvd, B., Munkhbat, B., Inoue, H., Shimakura, Y., Tsuchiya, T., Hotta, T., Extensive and long-term ex vivo production of dendritic cells from CD34 positive umbilical cord blood or bone marrow cells by novel culture system using mouse stroma (2001) J. Immunol. Methods, 253, pp. 45-55 
504 |a Smithson, G., Couse, J.F., Lubahn, D.B., Korach, K.S., Kincade, P.W., The role of estrogen receptors and androgen receptors in sex steroid regulation of B lymphopoiesis (1998) J. Immunol, 161, pp. 27-34 
504 |a Balazs, C., Leovey, A., Szabo, M., Bako, G., Stimulating effect of triiodothyronine on cell-mediated immunity (1980) Eur. J. Clin. Pharmacol, 17, pp. 19-23 
504 |a Chatterjee, S., Chandel, A.S., Immunomodulatory role of thyroid hormones: In vivo effect of thyroid hormones on the blastogenic response of lymphoid tissues (1983) Acta Endocrinol. (Copenh.), 103, pp. 95-100 
504 |a Lipscomb, M.F., Masten, B.J., Dendritic cells: Immune regulators in health and disease (2002) Physiol. Rev, 82, pp. 97-130 
504 |a Tamura, M., Matsuura, B., Miyauchi, S., Onji, M., Dendritic cells produce interleukin-12 in hyperthyroid mice (1999) Eur. J. Endocrinol, 141, pp. 625-629 
504 |a Tamaru, M., Matsuura, B., Onji, M., Increased levels of serum interleukin-12 in Graves' disease (1999) Eur. J. Endocrinol, 141, pp. 111-116 
504 |a Sundquist, M., Johansson, C., Wick, M.J., Dendritic cells as inducers of antimicrobial immunity in vivo (2003) APMIS, 111, pp. 715-724 
504 |a Gad, M., Claesson, M.H., Pedersen, A.E., Dendritic cells in peripheral tolerance and immunity (2003) APMIS, 111, pp. 766-775 
504 |a Liu, L., Dean, C.E., Porter, T.E., Thyroid hormones interact with glucocorticoids to affect somatotroph abundance in chicken embryonic pituitary cells in vitro (2003) Endocrinology, 144, pp. 3836-3841 
504 |a Yamaguchi, S., Murata, Y., Nagaya, T., Hayashi, Y., Ohmori, S., Nimura, Y., Seo, H., Glucocorticoids increase retinoid-X receptor α (RXRα) expression and enhance thyroid hormone action in primary cultured rat hepatocytes (1999) J. Mol. Endocrinol, 22, pp. 81-90 
504 |a Bonasio, R., von Andrian, U.H., Generation, migration and function of circulating dendritic cells (2006) Curr. Opin. Immunol, 18, pp. 503-511 
504 |a Laderach, D., Compagno, D., Danos, O., Vainchenker, W., Galy, A., RNA interference shows critical requirement for NF-κB p50 in the production of IL-12 by human dendritic cells (2003) J. Immunol, 171, pp. 1750-1757 
520 3 |a Accumulating evidence indicates a functional crosstalk between immune and endocrine mechanisms in the modulation of innate and adaptive immunity. However, the impact of thyroid hormones (THs) in the initiation of adaptive immune responses has not yet been examined. Here we investigated the presence of thyroid hormone receptors (TRs) and the impact of THs in the physiology of mouse dendritic cells (DCs), specialized antigen-presenting cells with the unique capacity to fully activate naive T cells and orchestrate adaptive immunity. Both immature and lipopolysaccharide-matured bone marrow-derived DCs expressed TRs at mRNA and protein levels, showing a preferential cytoplasmic localization. Remarkably, physiological levels of triiodothyronine (T3) stimulated the expression of DC maturation markers (major histocompatability complex II, CD80, CD86, and CD40), markedly increased the secretion of interleukin-12, and stimulated the ability of DCs to induce naive T cell proliferation and IFN-γ production in allogeneic T cell cultures. Analysis of the mechanisms involved in these effects revealed the ability of T3 to influence the cytoplasmicnuclear shuttling of nuclear factor-κB on primed DCs. Our study provides the first evidence for the presence of TRs on bone marrow-derived DCs and the ability of THs to regulate DC maturation and function. These results have profound implications in immunopathology, including cancer and autoimmune manifestations of the thyroid gland at the crossroads of the immune and endocrine systems. © FASEB.  |l eng 
593 |a Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Córdoba, Argentina 
593 |a Laboratorio de Inmunopatología, Instituto de Biología Y Medicina Experimental (IBYME) CONICET, Facultad de Ciencias Exactas Y Naturales, Buenos Aires, Argentina 
593 |a Cátedra de Genética Y Biología Molecular, Facultad de Farmacia Y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a CIBICI-CONICET, Departamento de Bioquímica Clínica, Ciudad Universitaria, Haya de la Torre Esq. Medina Allende, 5000 Córdoba, Argentina 
690 1 0 |a ADAPTIVE IMMUNITY 
690 1 0 |a ANTIGEN PRESENTATION 
690 1 0 |a THYROID HORMONES 
690 1 0 |a B7 ANTIGEN 
690 1 0 |a CD40 ANTIGEN 
690 1 0 |a CD86 ANTIGEN 
690 1 0 |a CELL MARKER 
690 1 0 |a GAMMA INTERFERON 
690 1 0 |a IMMUNOGLOBULIN ENHANCER BINDING PROTEIN 
690 1 0 |a INTERLEUKIN 12 
690 1 0 |a LIOTHYRONINE 
690 1 0 |a LIPOPOLYSACCHARIDE 
690 1 0 |a MAJOR HISTOCOMPATIBILITY ANTIGEN CLASS 2 
690 1 0 |a MESSENGER RNA 
690 1 0 |a PROTEIN 
690 1 0 |a THYROID HORMONE RECEPTOR 
690 1 0 |a ADAPTIVE IMMUNITY 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ANTIGEN PRESENTING CELL 
690 1 0 |a ARTICLE 
690 1 0 |a AUTOIMMUNE DISEASE 
690 1 0 |a BONE MARROW 
690 1 0 |a CELL CULTURE 
690 1 0 |a CELL FUNCTION 
690 1 0 |a CELL MATURATION 
690 1 0 |a CYTOKINE RELEASE 
690 1 0 |a CYTOPLASM 
690 1 0 |a DENDRITIC CELL 
690 1 0 |a ENDOCRINE SYSTEM 
690 1 0 |a FEMALE 
690 1 0 |a IMMUNE SYSTEM 
690 1 0 |a IMMUNOPATHOLOGY 
690 1 0 |a INTERFERON PRODUCTION 
690 1 0 |a LYMPHOCYTE PROLIFERATION 
690 1 0 |a MOUSE 
690 1 0 |a NEOPLASM 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a T LYMPHOCYTE ACTIVATION 
690 1 0 |a THYROID GLAND 
690 1 0 |a ANIMALS 
690 1 0 |a BONE MARROW CELLS 
690 1 0 |a CELL DIFFERENTIATION 
690 1 0 |a CERCOPITHECUS AETHIOPS 
690 1 0 |a COS CELLS 
690 1 0 |a CYTOSOL 
690 1 0 |a DENDRITIC CELLS 
690 1 0 |a FEMALE 
690 1 0 |a FLOW CYTOMETRY 
690 1 0 |a INTERLEUKIN-12 
690 1 0 |a MICE 
690 1 0 |a RECEPTORS, THYROID HORMONE 
690 1 0 |a T-LYMPHOCYTES 
690 1 0 |a TRANSFECTION 
690 1 0 |a TRIIODOTHYRONINE 
700 1 |a Montesinos, M.D.M. 
700 1 |a Susperreguy, S. 
700 1 |a Cervi, L. 
700 1 |a Ilarregui, J.M. 
700 1 |a Ramseyer, V.D. 
700 1 |a Masini-Repiso, A.M. 
700 1 |a Targovnik, H.M. 
700 1 |a Rabinovich, G.A. 
700 1 |a Pellizas, C.G. 
773 0 |d 2008  |g v. 22  |h pp. 1032-1042  |k n. 4  |p FASEB J.  |x 08926638  |w (AR-BaUEN)CENRE-996  |t FASEB Journal 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-42049109284&doi=10.1096%2ffj.07-8652com&partnerID=40&md5=f32b3862fab072bb39a186dd72e59c88  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1096/fj.07-8652com  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_08926638_v22_n4_p1032_Mascanfroni  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08926638_v22_n4_p1032_Mascanfroni  |y Registro en la Biblioteca Digital 
961 |a paper_08926638_v22_n4_p1032_Mascanfroni  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 66939