Frequency modulation during song in a suboscine does not require vocal muscles

The physiology of sound production in suboscines is poorly investigated. Suboscines are thought to develop song innately unlike the closely related oscines. Comparing phonatory mechanisms might therefore provide interesting insight into the evolution of vocal learning. Here we investigate sound prod...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Amador, A.
Otros Autores: Goller, F., Mindlin, G.B
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2008
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11887caa a22012857a 4500
001 PAPER-5948
003 AR-BaUEN
005 20230518203537.0
008 190411s2008 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-47549091556 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JONEA 
100 1 |a Amador, A. 
245 1 0 |a Frequency modulation during song in a suboscine does not require vocal muscles 
260 |c 2008 
270 1 0 |m Amador, A.; Departamento de Física, FCEyN, Universidad de Buenos AiresArgentina; email: anita@df.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Ames, P.L., The morphology of the syrinx in passerine birds (1971) Bull Peabody Museum Nat History, 37, pp. 1-94 
504 |a Beckers, G.J.L., Suthers, R.A., ten Cate, C., Mechanisms of frequency and amplitude modulation in ring dove song (2003) J Exp Biol, 206, pp. 1833-1843 
504 |a http://www.praat.org, Boersma P, Weenink D. Praat. Doing phonetics by computer Version 4.3.14, Computer program, Retrieved May 26, 2005, from; Bottjer, S.W., Miesner, E.A., Arnold, A.P., Forebrain lesions disrupt development but not maintenance of song in passerine birds (1984) Science, 224, pp. 901-903 
504 |a Brush T, Fitzpatrick JW. Great Kiskadee (Pitangus sulphuratus). In: The Birds of North America, edited by Poole A, Gill F. Philadelphia, PA: The Birds of North America, 2002, No. 622; Chiel, H.J., Beer, R.D., The brain has a body: Adaptive behavior emerges from interactions of nervous system, body and environment (1997) Trends Neurosci, 20, pp. 553-557 
504 |a Daley, M., Goller, F., Tracheal length changes during zebra finch song and their possible role in upper vocal tract filtering (2004) J Neurobiol, 59, pp. 319-330 
504 |a Doupe, A., Kuhl, P., Birdsong and human speech: Common themes and mechanisms (1999) Annu Rev Neurosci, 22, pp. 567-631 
504 |a Elemans, C.P.H., Spierts, I.L.Y., Hendriks, M., Schipper, H., Müller, U.K., van Leeuwen, J.L., Syringeal muscles fit the trill in ring doves (2006) J Exp Biol, 209, pp. 965-977 
504 |a Farries, M.A., The avian song system in comparative perspective (2004) Ann NY Acad Sci, 1016, pp. 61-76 
504 |a Gardner, T.J., Cecchi, G., Magnasco, M., Laje, R., Mindlin, G.B., Simple motor gestures for birdsongs (2001) Phys Rev Lett 87, (1-4). , art 208101 
504 |a Gaunt, A.S., An hypothesis concerning the relationship of syringeal structure to vocal abilities (1983) Auk, 100, pp. 853-862 
504 |a Gaunt, A.S., Gaunt, S.L.L., Mechanics of the syrinx in Gallus gallus. II. Electromyographic studies of ad libitum vocalizations (1977) J Morphol, 152, pp. 1-20 
504 |a Gaunt, A.S., Gaunt, S.L.L., Electromyographic studies of the syrinx in parrots (Aves, Psittacidae) (1985) Zoomorphology, 105, pp. 1-11 
504 |a Gaunt, A.S., Gaunt, S.L.L., Casey, R.M., Syringeal mechanics reassessed: Evidence from Streptopelia (1982) Auk, 99, pp. 474-494 
504 |a Goller, F., Suthers, R.A., Role of syringeal muscles in gating airflow and sound production in singing brown thrashers (1996) J Neurophysiol, 75, pp. 867-876 
504 |a Goller, F., Suthers, R.A., Role of syringeal muscles in controlling the phonology of bird song (1996) J Neurophysiol, 76, pp. 287-300 
504 |a Jarvis ED. Brains and birdsong. In Nature's Music. The Science of Birdsong, edited by Marler P, Slabbekoorn H. Amsterdam: Elsevier Academic, 2004, p. 226-271; Jarvis, E.D., Ribeiro, S., da Silva, M.L., Ventura, D., Vielliardk, J., Mello, C.V., Behaviorally driven gene expression reveals song nuclei in hummingbird brain (2000) Nature, 406, pp. 629-632 
504 |a Jürgens, U., Hast, M., Pratt, R., Effects of laryngeal nerve transection on squirrel monkey calls (2004) J Comp Physiol [A], 123, pp. 23-29 
504 |a Kent, R.D., (1997) The Speech Sciences, , San Diego: Singular Publishing Group 
504 |a Kleinbaum DG, Kupper LL. Applied Regression Analysis and Other Multivariable Methods. N. Scituate, MA: Duxbury, 1978; Kroodsma, D.E., Songs of the alder flycatcher (Empidonax alnorum) and willow flycatcher (Empidonax traillii) are innate (1984) Auk, 101, pp. 13-24 
504 |a Kroodsma DE. The diversity and plasticity of birdsong. In: Nature's Music. The Science of Birdsong, edited by Marler P, Slabbekoorn H. Amsterdam: Elsevier Academic, 2004, p. 108-131; Kroodsma, D.E., Konishi, M., A suboscine bird (eastern phoebe, Sayornis phoebe) develops normal song without auditory feedback (1991) Anim Behav, 42, pp. 477-487 
504 |a Laje R, Gardner TJ, Mindlin GB. Neuromuscular control of vocalizations in birdsong: a model. Phys Rev E 65: art. 051921, 2002; Larsen, O.N., Goller, F., Direct observation of syringeal muscle function in songbirds and a parrot (2002) J Exp Biol, 205, pp. 25-35 
504 |a Mindlin, G.B., Laje, R., (2005) The Physics of Birdsong, pp. 1-5. , Berlin, Germany: Springer Verlag 
504 |a Mindlin, G.B., Gardner, T.J., Goller, F., Suthers, R.A., Experimental support for a model of birdsong production (2003) Phys Rev E, 68, p. 041908 
504 |a Miskimen, M., The syrinx in certain tyrant flycatchers (1963) Auk, 80, pp. 156-165 
504 |a Nottebohm, F., Neural lateralization of vocal control in a passerine bird. I. Song (1971) J Exp Zool, 177, pp. 229-262 
504 |a Nottebohm, F., Brain pathways for vocal learning in birds: A review of the first 10 years (1980) Progress Psychobiol Physiol Psychol, 9, pp. 85-124 
504 |a Nottebohm, F., The road we traveled. Discovery, choreography, and significance of brain replaceable neurons (2004) Ann NY Acad Sci, 1016, pp. 628-658 
504 |a Nottebohm, F., Nottebohm, M.E., Left hypoglossal dominance in the control of canary and white-crowned sparrow song (1976) J Comp Physiol, 108, pp. 171-192 
504 |a Peek, F.W., An experimental study of the territorial function of vocal and visual display in the male red-winged blackbird (Agelaius phoeniceus) (1972) Anim Behav, 20, pp. 112-118 
504 |a Scharff, C., Nottebohm, F., A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: Implications for vocal learning (1991) J Neurosci, 11, pp. 2896-2913 
504 |a Seller, T.J., Unilateral nervous control of the syrinx in java sparrows (Padda oryzivora) (1979) J Comp Physiol, 129, pp. 281-288 
504 |a Simpson, H.B., Vicario, D.S., Brain pathways for learned and unlearned vocalizations differ in zebra finches (1990) J Neurosci, 10, pp. 1541-1556 
504 |a Smith, D.G., An experimental analysis of the function of red-winged blackbird song (1976) Behaviour, 56, pp. 135-156 
504 |a Steinecke, I., Herzel, H., Bifurcations in an asymmetric vocal-fold model (1995) J Acoust Soc Am, 97, pp. 1874-1884 
504 |a Suthers, R.A., Peripheral vocal mechanisms in birds: Are songbirds special? (2001) Neth J Zool, 51, pp. 217-242 
504 |a Suthers, R.A., Fattu, J.M., Mechanisms of sound production by echolocating bats (1973) Am Zool, 13, pp. 1215-1226 
504 |a Suthers, R.A., Goller, F., Motor correlates of vocal diversity in songbirds (1997) CurrOrnithol, 14, pp. 235-288 
504 |a Suthers RA, Goller F, Pytte C. The neuromuscular control of birdsong. Phil Trans R Soc Lond Biol Sci 354: 927-939, 1999; Suthers, R.A., Zollinger, S.A., Producing song: The vocal apparatus (2004) Ann NY Acad Sci, 1016, pp. 109-129 
504 |a Vicario, D.S., Contributions of syringeal muscles to respiration and vocalization in the zebra finch (1991) J Neurobiol, 22, pp. 63-73 
504 |a Wild, M., Functional neuroanatomy of the sensorimotor control of singing (2004) Ann NY Acad Sci, 1016, pp. 438-462 
504 |a Youngren, O.M., Peek, F.W., Phillips, R.E., Rpetitive vocalizations evoked by local electrical stimulation of avian brains (1974) Brain Behav Evol, 9, pp. 393-421 
504 |a Zaccarelli, R., Elemans, C.P.H., Fitch, W., Herzel, H., Modelling bird songs: Voice onset, overtones, and registers (2006) Acta Acustica Acustica, 92, pp. 741-748 
520 3 |a The physiology of sound production in suboscines is poorly investigated. Suboscines are thought to develop song innately unlike the closely related oscines. Comparing phonatory mechanisms might therefore provide interesting insight into the evolution of vocal learning. Here we investigate sound production and control of sound frequency in the Great Kiskadee (Pitangus sulfuratus) by recording air sac pressure and vocalizations during spontaneously generated song. In all the songs and calls recorded, the modulations of the fundamental frequency are highly correlated to air sac pressure. To test whether this relationship reflects frequency control by changing respiratory activity or indicates synchronized vocal control, we denervated the syringeal muscles by bilateral resection of the tracheosyringeal nerve. After denervation, the strong correlation between fundamental frequency and air sac pressure patterns remained unchanged. A single linear regression relates sound frequency to air sac pressure in the intact and denervated birds. This surprising lack of control by syringeal muscles of frequency in Kiskadees, in strong contrast to songbirds, poses the question of how air sac pressure regulates sound frequency. To explore this question theoretically, we assume a nonlinear restitution force for the oscillating membrane folds in a two mass model of sound production. This nonlinear restitution force is essential to reproduce the frequency modulations of the observed vocalizations. Copyright © 2008 The American Physiological Society.  |l eng 
593 |a Departamento de Física, FCEyN, Universidad de Buenos Aires, Argentina 
593 |a Department of Biology, University of Utah, Salt Lake City, UT, United States 
690 1 0 |a AIR SAC 
690 1 0 |a ANIMAL BEHAVIOR 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ARTICLE 
690 1 0 |a BREATHING 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DENERVATION 
690 1 0 |a FREQUENCY MODULATION 
690 1 0 |a MOTOR CONTROL 
690 1 0 |a NONHUMAN 
690 1 0 |a PRESSURE 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a SINGING 
690 1 0 |a SONGBIRD 
690 1 0 |a SOUND 
690 1 0 |a VOCALIZATION 
690 1 0 |a ALGORITHM 
690 1 0 |a ANIMAL 
690 1 0 |a ATMOSPHERIC PRESSURE 
690 1 0 |a NONLINEAR SYSTEM 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a SKELETAL MUSCLE 
690 1 0 |a SONGBIRD 
690 1 0 |a STATISTICAL ANALYSIS 
690 1 0 |a STATISTICAL MODEL 
690 1 0 |a STEREOTYPY 
690 1 0 |a AIR PRESSURE 
690 1 0 |a ALGORITHMS 
690 1 0 |a ANIMALS 
690 1 0 |a DATA INTERPRETATION, STATISTICAL 
690 1 0 |a DENERVATION 
690 1 0 |a MODELS, STATISTICAL 
690 1 0 |a MUSCLE, SKELETAL 
690 1 0 |a NONLINEAR DYNAMICS 
690 1 0 |a SONGBIRDS 
690 1 0 |a STEREOTYPED BEHAVIOR 
690 1 0 |a VOCALIZATION, ANIMAL 
650 1 7 |2 spines  |a BIRD 
700 1 |a Goller, F. 
700 1 |a Mindlin, G.B. 
773 0 |d 2008  |g v. 99  |h pp. 2383-2389  |k n. 5  |p J. Neurophysiol.  |x 00223077  |w (AR-BaUEN)CENRE-5710  |t Journal of Neurophysiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-47549091556&doi=10.1152%2fjn.01002.2007&partnerID=40&md5=996ef00b50a44dcb40e874d060168824  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1152/jn.01002.2007  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00223077_v99_n5_p2383_Amador  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223077_v99_n5_p2383_Amador  |y Registro en la Biblioteca Digital 
961 |a paper_00223077_v99_n5_p2383_Amador  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 66901