A posteriori error estimates for the Steklov eigenvalue problem
In this paper we introduce and analyze an a posteriori error estimator for the linear finite element approximations of the Steklov eigenvalue problem. We define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove that, up to higher order...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2008
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 06780caa a22007217a 4500 | ||
|---|---|---|---|
| 001 | PAPER-5940 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518203537.0 | ||
| 008 | 190411s2008 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-41149113576 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a ANMAE | ||
| 100 | 1 | |a Armentano, M.G. | |
| 245 | 1 | 2 | |a A posteriori error estimates for the Steklov eigenvalue problem |
| 260 | |c 2008 | ||
| 270 | 1 | 0 | |m Armentano, M.G.; Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina; email: garmenta@dm.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Andreev, A.B., Hristov, A.H., On the variational aspects for elliptic problems with parameter on the boundary (1999) Recent Advances in Numerical Methods and Applications II, Proceedings of the Fourth International Conference, pp. 587-593. , Sofia, Bulgaria, 1998, World Scientific, River Edge, NJ | ||
| 504 | |a Andreev, A.B., Todorov, T.D., Isoparametric finite-element approximation of a Steklov eigenvalue problem (2004) IMA J. Numer. Anal., 24, pp. 309-322 | ||
| 504 | |a Ainsworth, M., Oden, J.T., (2000) A Posteriori Error Estimation in Finite Element Analysis, , Wiley, New York | ||
| 504 | |a Armentano, M.G., The effect of reduced integration in the Steklov eigenvalue problem (2004) Math. Mod. Numer. Anal. (M2AN), 38 (1), pp. 27-36 | ||
| 504 | |a Babuška, I., Miller, A., A feedback finite element method with a posteriori error estimation. Part I: The finite element method and some basic properties of the a posteriori error estimator (1987) Comp. Meth. Appl. Mech. Engrg., 61, pp. 1-40 | ||
| 504 | |a Babuška, I., Osborn, J., Eigenvalue problems (1991) Handbook of Numerical Analysis, II, pp. 640-787. , Finite Element Methods (Part 1). Ciarlet P.G., and Lions J.L. (Eds), Elsevier (North-Holland), Amsterdam | ||
| 504 | |a Bergmann, S., Schiffer, M., (1953) Kernel Functions and Elliptic Differential Equations in Mathematical Physics, , Academic Press, New York | ||
| 504 | |a Bermúdez, A., Durán, R., Rodríguez, R., Finite element solution of incompressible fluid-structure vibration problems (1997) Internat. J. Numer. Meth. Eng., 40, pp. 1435-1448 | ||
| 504 | |a Bermúdez, A., Rodríguez, R., Santamarina, D., A finite element solution of an added mass formulation for coupled fluid-solid vibrations (2000) Numer. Math., 87, pp. 201-227 | ||
| 504 | |a Carstensen, C., Verfürth, R., Edge residuals dominate a posteriori error estimates for low order finite element methods (1999) SIAM J. Numer. Anal., 36, pp. 1571-1587 | ||
| 504 | |a Ciarlet, P., (1978) The Finite Element Method for Elliptic Problems, , North-Holland, Amsterdam | ||
| 504 | |a Conca, C., Planchard, J., Vanninathan, M., (1995) Fluid and Periodic Structures, , John Wiley & Sons, New York | ||
| 504 | |a Durán, R.G., Padra, C., Rodríguez, R., A posteriori error estimates for the finite element approximation of eigenvalue problems (2003) Math. Mod. & Met. Appl. Sci. (M3AS), 13 (8), pp. 1219-1229 | ||
| 504 | |a Durán, R.G., Gastaldi, L., Padra, C., A posteriori error estimators for mixed approximations of eigenvalue problems (1999) Math. Mod. & Met. Appl. Sci. (M3AS), 9 (8), pp. 1165-1178 | ||
| 504 | |a Grisvard, P., (1985) Elliptic Problems in Nonsmooth Domain, , Pitman, Boston | ||
| 504 | |a Larson, M.G., A posteriori and a priori error analysis for finite elements approximations of self-adjoint elliptic eigenvalue problems (2000) SIAM J. Numer. Anal., 38, pp. 608-625 | ||
| 504 | |a Morand, H.J.P., Ohayon, R., (1995) Fluid-Structure Interaction: Applied Numerical Methods, , John Wiley & Sons, New York | ||
| 504 | |a Nochetto, R., Pointwise a posteriori error estimates for elliptic problems on highly graded meshes (1995) Math. Comp., 64, pp. 1-22 | ||
| 504 | |a Rodríguez, R., Some remarks on Zienkiewicz-Zhu estimator (1994) Numer. Meth. PDE, 10, pp. 625-635 | ||
| 504 | |a Verfürth, R., (1996) A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, , Wiley & Teubner, New York | ||
| 504 | |a Verfürth, R., A posteriori error estimates for nonlinear problems (1989) Math. Comp., 62, pp. 445-475 | ||
| 504 | |a Weinberger, H.F., (1974) Variational Methods for Eigenvalue Approximation, , SIAM, Philadelphia, PA | ||
| 520 | 3 | |a In this paper we introduce and analyze an a posteriori error estimator for the linear finite element approximations of the Steklov eigenvalue problem. We define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove that, up to higher order terms, the estimator is equivalent to the energy norm of the error. Finally, we prove that the volumetric part of the residual term is dominated by a constant times the edge residuals, again up to higher order terms. © 2007 IMACS. |l eng | |
| 536 | |a Detalles de la financiación: Fundación Antorchas | ||
| 536 | |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 03-05009 | ||
| 536 | |a Detalles de la financiación: Supported by ANPCyT under grant PICT 03-05009 and Fundación Antorchas. The authors are members of CONICET, Argentina. Corresponding author. E-mail addresses: garmenta@dm.uba.ar (M.G. Armentano), padra@cab.cnea.gov.ar (C. Padra). | ||
| 593 | |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina | ||
| 593 | |a Centro Atómico Bariloche, 4800 Bariloche, Argentina | ||
| 690 | 1 | 0 | |a A POSTERIORI ERROR ESTIMATES |
| 690 | 1 | 0 | |a FINITE ELEMENTS |
| 690 | 1 | 0 | |a STEKLOV EIGENVALUE PROBLEM |
| 690 | 1 | 0 | |a ERROR ANALYSIS |
| 690 | 1 | 0 | |a FINITE ELEMENT METHOD |
| 690 | 1 | 0 | |a PROBLEM SOLVING |
| 690 | 1 | 0 | |a POSTERIORI ERROR ESTIMATES |
| 690 | 1 | 0 | |a STEKLOV EIGENVALUE PROBLEM |
| 690 | 1 | 0 | |a EIGENVALUES AND EIGENFUNCTIONS |
| 700 | 1 | |a Padra, C. | |
| 773 | 0 | |d 2008 |g v. 58 |h pp. 593-601 |k n. 5 |p Appl Numer Math |x 01689274 |w (AR-BaUEN)CENRE-3774 |t Applied Numerical Mathematics | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-41149113576&doi=10.1016%2fj.apnum.2007.01.011&partnerID=40&md5=19ac416d3780341c20124f7bf9f45d1e |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.apnum.2007.01.011 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_01689274_v58_n5_p593_Armentano |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01689274_v58_n5_p593_Armentano |y Registro en la Biblioteca Digital |
| 961 | |a paper_01689274_v58_n5_p593_Armentano |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 66893 | ||