Structural and energetic study of cisplatin and derivatives: Comparison of the performance of density funtional theory implementations

In this work, we compare the performance of different DFT implementations, using analytical and numerical basis sets for the expansion of the atomic wave function, in determining structural and energetic parameters of Cisplatin and some biorelevant derivatives. Characterization of the platinum-conta...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Dans, P.D
Otros Autores: Crespo, A., Estrin, D.A, Coitiño, E.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2008
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 20772caa a22012257a 4500
001 PAPER-5928
003 AR-BaUEN
005 20230518203536.0
008 190411s2008 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-58149150995 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Dans, P.D. 
245 1 0 |a Structural and energetic study of cisplatin and derivatives: Comparison of the performance of density funtional theory implementations 
260 |c 2008 
270 1 0 |m Coitiño, E. L.; Laboratorio de Química Teórica y Computacional, Instituto de Química Biológica, Centro Universitario Malvín Norte, Iguá 4225, Montevideo 11400, Uruguay; email: lcoitino@luna.fcien.edu.uy 
506 |2 openaire  |e Política editorial 
504 |a Jamieson, E.R., Lippard, S.J., Structure, Recognition, and Processing of Cisplatin-DNA Adducts (1999) Chem. Rev, 99, pp. 2467-2496 
504 |a Rosenberg, B., Platinum Complexes for the Treatment of Cancer: Why the Search Goes on (1999) Cisplatin. Chemistry and Biochemistry of a Leading Anticancer Drug, pp. 3-27. , Lippert, B, Ed, Wiley-VCH: Zürich 
504 |a Villani, G., Le Gac, N.T., Hoffmann, J.-S., Replication of Platinated DNA and Its Mutagenic Consequences (1999) Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug, pp. 135-157. , Lippert, B, Ed, Wiley-VCH: Zürich 
504 |a Zambie, D.B., Lippard, S.J., The Response of Cellular Proteins to Cisplatin-Damaged DNA (1999) Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug, pp. 73-110. , Lippert, B, Ed, Wiley-VCH: Zürich 
504 |a Fuertes, M.A., Alonso, C., Pérez, J.M., Biochemical modulation of Cisplatin mechanisms of action: Enhancement of antitumor activity and circumvention of drug resistance (2003) Chem. Rev, 103, pp. 645-662 
504 |a Wang, D., Lippard, S.J., Cellular Procesing of Platinum Anticancer Drugs (2005) Nature Rev, 4, pp. 307-320 
504 |a Basch, H, Krauss, M, Stevens, W. J, Cohen, D. Electronic and geometric structures of Pt(NH3)22, Pt(NH 3)2Cl2, Pt(NH3)3X, and Pt(NH3)2XY X, Y, H2O, OH, Inorg. Chem. 1985, 24, 3313-3317; Kozelka, J., Savinelli, R., Berthier, G., Flament, J.P., Lavery, R., Force field for platinum binding to adenine (1993) J. Comput. Chem, 14, pp. 45-53 
504 |a Cundari, T.R., Fu, W., Moody, E.W., Slavin, L.L., Snyder, L.A., Sommerer, S.O., Klinckman, T.R., Molecular Mechanics Force Field for Platinum Coordination Complexes (1996) J. Phys. Chem, 100, pp. 18057-18064 
504 |a Pavankumar, P.N.V., Seetharamulu, S., Yao, S., Saxe, J.D., Reddy, D.G., Hausheer, F.H., Comprehensive Ab Initio Quantum Mechanical and Molecular Orbital (MO) Analysis of Cisplatin: Structure, Bonding, Charge Density, and Vibrational Frequencies (1999) J. Comput. Chem, 20, pp. 365-382 
504 |a Wysokinski, R., Michalska, D., The Performance of Different Density Functional Methods in the Calculation of Molecular Structures and Vibrational Spectra of Platinum(II) Antitumor Drugs: Cisplatin and Carboplatin (2001) J. Comput. Chem, 22, p. 901912 
504 |a Hofmann, A., Jaganyi, D., Munro, O.Q., Liehr, G., van Eldik, R., Electronic Tuning of the Lability of Pt(II) Complexes through π-Acceptor Effects. Correlations between Thermodynamic, Kinetic, and Theoretical Parameters (2003) Inorg. Chem, 42, pp. 1688-1700 
504 |a Michalska, D., Wysokinski, R., Molecular Structure and Bonding in Platinum-Picoline Anticancer Complex: Density Functional Study (2004) Collect. Czech. Chem. Commun, 69, pp. 63-72 
504 |a Wysokinski, R., Kuduk-Jaworska, J., Michalska, D., Electronic Structure, Raman and Infrared spectra, and vibrational assignment of Carboplatin. Density functional theory studies (2006) J. Mol. Struct. (Theochem), 758, pp. 169-179 
504 |a Wysokinski, R., Hernik, K., Szostak, R., Michalska, D., Electronic structure and vibrational spectra of cis-diammine-(orotato)platinum(II), a potential Cisplatin analogue: DFT and experimental study (2007) Chem. Phys, 333, pp. 37-48 
504 |a Carloni, P., Andreoni, W., Hutter, J., Curioni, A., Giannozzi, P., Parrinello, M., Structure and bonding in cisplatin and other Pt(II) complexes (1995) Chem. Phys. Lett, 234, pp. 50-56 
504 |a Tornaghi, E., Andreoni, W., Carloni, P., Hutter, J., Parrinello, M., Carboplatin versus cisplatin: Density functional approach to their molecular properties (1995) Chem. Phys. Lett, 246, pp. 469-474 
504 |a Carloni, P., Andreoni, W., Platinum-Modified Nucleobase Pairs in the Solid State: A Theoretical Study (1996) J. Phys. Chem, 100, pp. 17797-17800 
504 |a Carloni, P., Sprik, M., Andreoni, W., Key Steps of the cis-Platin-DNA Interaction: Density Functional Theory-Based Molecular Dynamics Simulations (2000) J. Phys. Chem. B, 104, pp. 823-835 
504 |a Spiegel, K., Rothlisberger, U., Carloni, P., Cisplatin Binding to DNA Oligomers from Hybrid Car-Parrinello/Molecular Dynamics Simulations (2004) J. Phys. Chem. B, 108, pp. 2699-2707 
504 |a Magistrate, A., Ruggerone, P., Spiegel, K., Carloni, P., Reedjik, J., (2006) J. Phys. Chem. B, 110, pp. 3604-3613 
504 |a Deeth, R.J., Elding, L.I., Theoretical Modeling of Water Exchange on [Pd(H2O)4]2+1, [Pt(H2O) 4]2+, and trans-[PtCl2 (H2O) 2] (1996) Inorg. Chem, 35, pp. 5019-5026 
504 |a Chval, Z., Sip, M., Pentacoordinated transition states of cisplatin hydrolysis-ab initio study (2000) J. Mol. Struct. (Theochem), 532, pp. 59-68 
504 |a Burda, J.V., Zeizinger, M., Sponer, J., Leszczynski, J., Hydration of cis- and trans-platin: A pseudopotential treatment in the frame of a G3-type theory for platinum complexes (2000) J. Chem. Phys, 113, pp. 2224-2232 
504 |a Bergès, J., Caillet, J., Langlet, J., Kozelka, J., Hydration and 'inverse hydration' of platinum(II) complexes: An analysis using the density functionals PW91 and BLYP (2001) Chem. Phys. Lett, 344, pp. 573-577 
504 |a Zhang, Y., Guo, Z., You, X., Hydrolysis Theory for Cisplatin and Its Analogues Based on Density Functional Studies (2001) J. Am. Chem. Soc, 123, pp. 9378-9387 
504 |a Tsipis, A.C., Sigalas, M.P., Mechanistic aspects of the complete set of hydrolysis and anation reactions of cis- and trans-DDP related to their antitumor activity modeled by an improved ASED-MO approach (2002) J. Mol. Struct. (Theochem), 584, pp. 235-248 
504 |a Costa, L.A.S., Rocha, W.R., De Almeida, W.B., Dos Santos, H.F., The hydrolysis process of the cis-dichloro(ethylendiamine)platinum(II): A theoretical study (2003) J. Chem. Phys, 118, pp. 10584-10592 
504 |a Costa, L.A.S., Rocha, W.R., De Almeida, W.B., Dos Santos, H.F., The solvent effect on the aquation processes of the cis- dichloro(ethylenediammine)platinum(II) using continuum solvation models (2004) Chem. Phys. Lett, 387, pp. 182-187 
504 |a Burda, J.V., Zeizinger, M., Leszczynski, J., Activation barriers and rate constants for hydration of platinum and palladium square-planar complexes: An ab initio study (2004) J. Chem. Phys, 120, pp. 1253-1262 
504 |a Robertazzi, A., Platts, J.A., Hydrogen Bonding, Solvation and Hydrolysis of Cisplatin: A Theoretical Study (2004) J. Comput. Chem, 25, pp. 1060-1067 
504 |a Raber, J., Zhu, C., Eriksson, L.A., Activation of anti-cancer drug Cisplatin-is the activated complex fully aquated (2004) Mol. Phys, 102, pp. 2537-2544 
504 |a Zhu, C., Raber, J., Eriksson, L.A., Hydrolysis Process of the Second Generation Platinum-Based Anticancer Drug cis-Amminedichloro- cyclohexylamineplatinum(II) (2005) J. Phys. Chem. B, 109, pp. 12195-12205 
504 |a Lau, J.K.-C., Deubel, D.V., Hydrolysis of the Anticancer Drug Cisplatin: Pitfalls in the Interpretation of Quantum Chemical Calculations (2006) J. Chem. Theory Comput, 2, pp. 103-106 
504 |a Song, T., Hu, P., Insight into the solvent effect: A density functional theory study of Cisplatin hydrolysis (2006) J. Chem. Phys, 125, p. 091101 
504 |a Boudreaux, E. A.; Carsey, T. P. Quasirelativistic MO Calculations on Platinum complexes (Anticancer Drugs) and their Interaction with DNA. Int. J. Quantum Chem. 1980, 18, 469-479; Basch, H.; Krauss, M.; Stevens, W. J.; Cohen, D. Binding of Pt(NH3)3 2+ to nucleic acid bases. Inorg. Chem. 1986, 25, 684-688; Zilberberg, I.L., Avdeev, V.I., Zhidomirov, G.M., Effect of cisplatin binding on guanine in nucleic acid: An ab initio study (1997) J. Mol. Struct. (Theochem), 418, pp. 73-81 
504 |a Pelmenschikov, A.; Zilberberg, I. L.; Leszczynski, J.; Famulari, A.; Sironi, M.; Raimondi, M. cis[Pt(NH3)2]2+ coordination to the N7 and 06 sites of a guanine-cytosine pair: disruption of the Watson-Crick H-bonding pattern. Chem. Phys. Lett. 1999, 314, 496-500; Burda, J.V., Sponer, J., Leszczynski, J., The interactions of square platinum(II) complexes with guanine and adenine: A quantum-chemical ab initio study of metalated tautomeric forms (2000) J. Biol. Inorg. Chem, 5, pp. 178-188 
504 |a Burda, J.V., Sponer, J., Leszczynski, J., The influence of square planar platinum complexes on DNA base pairing. An ab initio DFT study (2001) Phys. Chem. Chem. Phys, 3, pp. 4404-4411 
504 |a Tsipis, A.C., Katsoulos, G.A., Conformational preferences, rotational barriers and energetics of purine nucleobase rotation and dissociation in square planar platinum(II) antitumour complexes: Structure-activity correlation (2001) Phys. Chem. Chem. Phys, 3, pp. 5165-5172 
504 |a Deubel, D.V., On the Competition of the Purine Bases, Functionalities of Peptide Side Chains, and Protecting Agents for the Coordination Sites of Dicationic Cisplatin Derivatives (2002) J. Am. Chem. Soc, 124, pp. 5834-5842 
504 |a Baik, M.-H., Friesner, R.A., Lippard, S., Theoretical Study on the Stability of N-Glycosyl Bonds: Why Does N7-Platination Not Promote Depurination (2002) J. Am. Chem. Soc, 124, pp. 4495-4503 
504 |a Baik, M.-H., Friesner, R.A., Lippard, S.J., Theoretical Study of Cisplatin Binding to Purine Bases: Why Does Cisplatin Prefer Guanine over Adenine (2003) J. Am. Chem. Soc, 125, pp. 14082-14092 
504 |a Chval, Z., Sip, M., Transition states of cisplatin binding to guanine and adenine: Ab initio reactivity study (2003) Collect. Czech. Chem. Commun, 68, pp. 1105-1118 
504 |a Burda, J.V., Sponer, J., Hrabakova, J., Zeizinger, M., Leszczynski, J., The Influence of N7 Guanine Modifications on the Strength of Watson-Crick Base Pairing and Guanine N1 Acidity: Comparison of GasPhase and Condensed-Phase Trends (2003) J. Phys. Chem. B, 107, pp. 5349-5356 
504 |a Burda, J.V., Leszczynski, J., How Strong Can the Bend Be on a DNA Helix from Cisplatin? DFT and MP2 Quantum Chemical Calculations of Cisplatin-Bridged DNA Purine Bases (2003) Inorg. Chem, 42, pp. 7162-7172 
504 |a Deubel, D.V., Factors Governing the Kinetic Competition of Nitrogen and Sulfur Ligands in Cisplatin Binding to Biological Targets (2004) J. Am. Chem. Soc, 126, pp. 5999-6004 
504 |a Jia, M., Qu, W., Yang, Z., Chen, G., Theoretical study on the factors that affect the structure and stability of the adduct of a new platinum anticancer drug with a duplex DNA (2005) Int. J. Modern Phys. B, 19, pp. 2939-2949 
504 |a Raber, J., Zhu, C., Eriksson, L.A., Theoretical Study of Cisplatin Binding to DNA: The Importance of Initial Complex Stabilization (2005) Phys. Chem. B, 109, pp. 11006-11015 
504 |a Costa, L.A., Hambley, T.W., Rocha, W.R., Almeida, W.B., Dos Santos, H.F., Kinetics and structural aspects of the cisplatin interactions with guanine: A quantum mechanical description (2006) Int. J. Quantum Chem, 106, pp. 2129-2144 
504 |a Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys.: Condens. Matter, 14, pp. 2745-2779 
504 |a Reich, S., Thomsen, C., Ordejón, P., Electronic band structure of isolated and bundled carbon nanotubes (2002) Phys. Rev. B, 65, pp. 155411-155422 
504 |a Dans, P.D., Coitiño, E.L., Crespo, A., Estrín, D.A., Unraveling Step by Step the Molecular Choreography Ruling the Sequence-Dependent DNA Structural Changes Promoted by Cisplatin (2008), in preparation; Frisch, M. J, Trucks, G. W, Schlegel, H. B, Scuseria, G. E, Robb, M. A, Cheeseman, J. R, Zakrzewski, V. G, Montgomeri, J. A, Stratmann, R. E, Burant, J. C, Dapprich, S, Millam, J. M, Daniels, A. D, Kudin, K. N, Strain, M. C, Farkas, O, Tomasi, J, Barone, V, Cossi, M, Cammi, R, Mennucci, B, Pomelli, C, Adamo, C, Clifford, S, Ochterski, J, Petersson, G. A, Ayala, P. Y, Cui, Q, Morokuma, K, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Cioslowski, J, Ortiz, J. V, Baboul, A. G, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Gomperts, R, Martin, R. L, Fox, D. J, Keith, T, Al-Laham, M. A, Peng, Y, Nanayakkara, A, Challacombe, M, Gill, P. M. W, Johnson, B, Chen, W, Wong, M. W, Andres, J. L, Gonzalez, C, Head-Gordon, M, Replogle, E. S, Pople, J. A. Gaussian 03, revision B05; Gaussian Inc, Pittsburgh, PA, 1998; Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Montgomery, J.A., General atomic and molecular electronic structure system (1993) J. Comput. Chem, 14, pp. 1347-1363 
504 |a Møller, C., Plesset, M.S., Note on an Approximation Treatment for Many-Electron Systems (1934) Phys. Rev, 46, pp. 618-622 
504 |a Perdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett, 77, pp. 3865-3868 
504 |a Adamo, C., Barone, V., Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models (1998) J. Chem. Phys, 108, pp. 664-675 
504 |a Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange (1993) Chem. Phys, 98, pp. 5648-5652 
504 |a Lee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density (1988) Phys. Rev. B, 37, pp. 785-789 
504 |a Burke, K., Perdew, J.P., Wang, Y., (1998) Electronic Density Functional Theory: Recent Progress and New Directions, pp. 1-395. , Dobson, J. F, Vignale, G, Das, M. P, Eds, Plenum: New York 
504 |a Perdew, J.P., Density-functional approximation for the correlation energy of the inhomogeneous electron gas (1986) Phys. Rev. B, 33, pp. 8822-8824 
504 |a Stevens, W., Basch, H., Krauss, J., Compact effective potentials and efficient shared-exponent basis sets for the first-and second-row atoms (1984) J. Chem. Phys, 81, pp. 6026-6033 
504 |a Stevens, W.J., Krauss, M., Basch, H., Jasien, P.G., Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms (1992) Can. J. Chem, 70, pp. 612-630 
504 |a Dunning Jr., T.H., Hay, P.J., Gaussian basis sets for molecular calculations (1976) Modern Theoretical Chemistry, 3, pp. 1-28. , Schaefer, H. F, III, Ed, Plenum: New York 
504 |a Hay, P.J., Wadt, W.R., Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg (1985) J. Chem. Phys, 82, pp. 270-283 
504 |a Wadt, W.R., Hay, P.J., Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi (1985) J. Chem. Phys, 82, pp. 284-298 
504 |a Hay, P.J., Wadt, W.R., Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals (1985) J. Chem. Phys, 82, pp. 299-310 
504 |a Ditchfield, R., Hehre, W.J., Pople, J.A., Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules (1971) J. Chem. Phys, 54, pp. 724-728 
504 |a Crespo, A., Marti, M.A., Kalko, S.G., Morreale, A., Orozco, M., Gelpi, J.L., Luque, F.J., Estrin, D.A., Theoretical Study of the Truncated Hemoglobin HbN: Exploring the Molecular Basis of the NO Detoxification Mechanism (2005) J. Am. Chem. Soc, 127, pp. 4433-4444 
504 |a Marti, M.A., Scherlis, D.A., Doctorovich, F.A., Ordejón, P., Estrin, D.A., Modulation of the NO trans effect in heme proteins: Implications for the activation of soluble guanylate cyclase (2003) J. Biol. Inorg. Chem, 8, pp. 595-600 
504 |a Marti, M.A., Capece, L., Crespo, A., Doctorovich, F., Estrin, D.A., Nitric Oxide Interaction with Cytochrome c and Its Relevance to Guanylate Cyclase. Why does the Iron Histidine Bond Break (2005) J. Am. Chem. Soc, 127, pp. 7721-7728 
504 |a Troullier, N., Martins, J.L., Efficient pseudopotentials for plane-wave calculations (1991) Phys. Rev. B, 43, pp. 1993-2006 
504 |a Milburn, G.H.W., Truter, M.R., The crystal structures of cis- and trans-dichlorodiammineplatinum(II) (1966) J. Chem. Soc. A, 1, pp. 1609-1616 
504 |a Wing, R.M., Pjura, P., Drew, H.R., Dickerson, R.E., The primary mode of binding of cisplatin to a B-DNA dodecamer: C-G-C-G-A-A-T-T-C-G-C-G (1984) EMBO J, 3, pp. 1201-1206 
504 |a Hellquist, B., Bengtsson, L.A., Holmberg, B., Hedman, B., Persson, I., Elding, L.I., Structures of solvated cations of Palladium(II) and Platinum(II) in dimethyl sulfoxide, acetonitrile and aqueous solution studied by exafs and laxs (1991) Acta Chem. Scand, 45, pp. 449-455 
504 |a Berners-Price, S.J., Appleton, T.G., The Chemistry of Cisplatin in Aqueous Solution (2000) Platinum-Based Drugs in Cancer Therapy, pp. 3-35. , Farrell, N. P, Kelland, L. R, Eds, Humana Press Inc: Totowa 
504 |a van der Wijst, T., Fonseca Guerra, C., Swart, M., Bickelhaupt, F.M., Performance of various density functionals for the hydrogen bonds in DNA base pairs (2006) Chem. Phys. Lett, 426, pp. 415-421 
520 3 |a In this work, we compare the performance of different DFT implementations, using analytical and numerical basis sets for the expansion of the atomic wave function, in determining structural and energetic parameters of Cisplatin and some biorelevant derivatives. Characterization of the platinum-containing species was achieved at the HF, MP2, and DFT (PBE1PBE, mPW1PW91, B3LYP, B3PW91, and B3P86) levels of theory, using two relativistic effective core potentials to treat the Pt atom (LanL2DZ and SBK), together with analytical Gaussian-type basis sets as implemented in Gaussian03. These results were compared with those obtained with the SIESTA code that employs a pseudopotential derived from the Troullier-Martins procedure for the Pt atom and numerical pseudoatomic orbitals as basis set. All modeled properties were also compared with the experimental values when available or to the best theoretical calculations known to date. On the basis of the results, SIESTA is an excellent alternative to determine structure and energetics of platinum complexes derived from Cisplatin, with less computational efforts. This validates the use of the SIESTA code for this type of chemical systems and thus provides a computationally efficient quantum method (capable to linear scaling at large sizes and available in QM/MM implementations) for exploring larger and more complex chemical models which shall reproduce more faithfully the real chemistry of Cisplatin in physiological conditions. © 2008 American Chemical Society.  |l eng 
593 |a Laboratorio de Química Teórica y Computacional, Instituto de Química Biológica, Centro Universitario Malvín Norte, Iguá 4225, Montevideo 11400, Uruguay 
593 |a Departamento de Quimica Inorganica, Analitica y Quimica Física/IUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Pabellón II, Buenos Aires (C1428EHA), Argentina 
700 1 |a Crespo, A. 
700 1 |a Estrin, D.A. 
700 1 |a Coitiño, E.L. 
773 0 |d 2008  |g v. 4  |h pp. 740-750  |k n. 5  |p J. Chem. Theory Comput.  |x 15499618  |t Journal of Chemical Theory and Computation 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-58149150995&doi=10.1021%2fct7002385&partnerID=40&md5=dc1ffaed3b7dfae99bf894790cf70ecb  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/ct7002385  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15499618_v4_n5_p740_Dans  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15499618_v4_n5_p740_Dans  |y Registro en la Biblioteca Digital 
961 |a paper_15499618_v4_n5_p740_Dans  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 66881