Spatial-specific action of serotonin within the leech midbody ganglion

Serotonin is a conspicuous neuromodulator in the nervous system of many vertebrates and invertebrates. In previous experiments performed in the leech nervous system, we compared the effect of the amine released from endogenous sources [using selective serotonin reuptake inhibitors (SSRIs), e.g. fluo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Calviño, M.A
Otros Autores: Szczupak, L.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2008
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15471caa a22015137a 4500
001 PAPER-5913
003 AR-BaUEN
005 20230518203535.0
008 190411s2008 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-43749083030 
024 7 |2 cas  |a cyproheptadine, 129-03-3, 969-33-5; fluoxetine, 54910-89-3, 56296-78-7, 59333-67-4; metitepine, 20229-30-5; serotonin, 50-67-9; Cyproheptadine, 129-03-3; Fluoxetine, 54910-89-3; Methiothepin, 20229-30-5; Serotonin Antagonists; Serotonin Uptake Inhibitors; Serotonin, 50-67-9 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JCPAD 
100 1 |a Calviño, M.A. 
245 1 0 |a Spatial-specific action of serotonin within the leech midbody ganglion 
260 |c 2008 
270 1 0 |m Calviño, M. A.; LFBM, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina; email: mcalvino@fbmc.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Acosta-Urquidi, J., Sahley, C.L., Kleinhaus, A.L., Serotonin differentially modulates two K+ currents in the Retzius cell of the leech (1989) J Exp Biol, 145, pp. 403-417 
504 |a Angstadt, J.D., Friesen, W.O., Modulation of swimming behavior in the medicinal leech. I. Effects of serotonin on the electrical properties of swim-gating cell 204 (1993) J Comp Physiol a, 172, pp. 223-234 
504 |a Barnes, N.M., Sharp, T., A review of central 5-HT receptors and their function (1999) Neuropharmacology, 38, pp. 1083-1152 
504 |a Bruns, D., Jahn, R., Real-time measurement of transmitter release from single synaptic vesicles (1995) Nature, 377, pp. 62-65 
504 |a Burgin, A.M., Szczupak, L., Network interactions among sensory neurons in the leech (2003) J Comp Physiol a, 189, pp. 59-67 
504 |a Burrell, B.D., Sahley, C.L., Muller, K.J., Non-associative learning and serotonin induce similar bidirectional changes in excitability of a neuron critical for learning in the medicinal leech (2001) J Neurosci, 21, pp. 1401-1412 
504 |a Calviño, M.A., Iscla, I.R., Szczupak, L., Selective serotonin reuptake inhibitors induce spontaneous interneuronal activity in the leech nervous system (2005) J Neurophysiol, 93, pp. 2644-2655 
504 |a Catarsi, S., Garcia-Gil, M., Traina, G., Brunelli, M., Seasonal variation of serotonin content and nonassociative learning of swim induction in the leech Hirudo medicinalis (1990) J Comp Physiol a, 167, pp. 469-474 
504 |a Cohen, J.E., Onyike, C.U., McElroy, V.L., Lin, A.H., Abrams, T.W., Pharmacological characterization of an adenylyl cyclase-coupled 5-HT receptor in Aplysia: Comparison with mammalian 5-HT receptors (2003) J Neurophysiol, 89, pp. 1440-1455 
504 |a Crisp, K.M., Mesce, K.A., Beyond the central pattern generator: Amine modulation of decision-making neural pathways descending from the brain of the medicinal leech (2006) J Exp Biol, 209, pp. 1746-1756 
504 |a De-Miguel, F.F., Trueta, C., Synaptic and extrasynaptic secretion of serotonin (2005) Cell Mol Neurobiol, 25, pp. 297-312 
504 |a Diefenbach, T.J., Sloley, B.D., Goldberg, J.I., Neurite branch development of an identified serotonergic neuron from embryonic Helisoma: Evidence for autoregulation by serotonin (1995) Dev Biol, 167, pp. 282-293 
504 |a Douglas, C.L., Baghdoyan, H.A., Lydic, R., M2 muscarinic autoreceptors modulate acetylcholine release in prefrontal cortex of C57BL/6J mouse (2001) J Pharmacol Exp Ther, 299, pp. 960-966 
504 |a Harris-Warrick, R.M., Marder, E., Modulation of neural networks for behavior (1991) Annu Rev Neurosci, 14, pp. 39-57 
504 |a Hashemzadeh-Gargari, H., Friesen, W.O., Modulation of swimming activity in the medicinal leech by serotonin and octopamine (1989) Comp Biochem Physiol, 94, pp. 295-302 
504 |a Iscla, I., Arini, P.D., Szczupak, L., Differential channeling of sensory stimuli onto a motor neuron in the leech (1999) J Comp Physiol a, 184, pp. 233-241 
504 |a Jacobs, B.L., Fornal, C.A., 5-HT and motor control: A hypothesis (1993) Trends Neurosci, 16, pp. 346-352 
504 |a Jankowska, E., Spinal interneuronal systems: Identification, multifunctional character and reconfigurations in mammals (2001) J Physiol, 533, pp. 31-40 
504 |a Kerkut, G.A., Walker, R.J., The action of acetylcholine, dopamine and 5-hydroxytryptamine on the spontaneous activity of the cells of Retzius of the leech, Hirudo medicinalis (1967) Br J Pharmacol Chemother, 30, pp. 644-654 
504 |a Kristan Jr., W.B., Nusbaum, M.P., The dual role of serotonin in leech swimming (1982) J Physiol, 78, pp. 743-747. , (Paris) 
504 |a Leake, L.D., Koubanakis, M., Central and peripheral 5-HT receptors in the leech (Hirudo medicinalis) redefined (1995) Gen Pharmacol, 26, pp. 1709-1717 
504 |a Lent, C.M., Dickinson, M.H., Serotonin integrates the feeding behavior of the medicinal leech (1984) J Comp Physiol a, 154, pp. 457-471 
504 |a Lent, C.M., Zundel, D., Freedman, E., Groome, J.R., Serotonin in the leech central nervous system: Anatomical correlates and behavioral effects (1991) J Comp Physiol a, 168, pp. 191-200 
504 |a Lessmann, V., Dietzel, I.D., Development of serotonin-induced ion currents in identified embryonic Retzius cells from the medicinal leech (Hirudo medicinalis) (1991) J Neurosci, 11, pp. 800-809 
504 |a McAddo, D.J., Coggeshall, R.E., Gas chromatographic-mass spectrometric analysis of biogenic amines in identified neurons and tissues of Hirudo medicinalis (1976) J Neurochem, 26, pp. 163-7 
504 |a MacAgno, E.R., Number and distribution of neurons in leech segmental ganglia (1980) J Comp Neurol, 190, pp. 283-302 
504 |a Mangan, P.S., Curran, G.A., Hurney, C.A., Friesen, W.O., Modulation of swimming behavior in the medicinal leech. III. Control of cellular properties in motor neurons by serotonin (1994) J Comp Physiol a, 175, pp. 709-722 
504 |a Marin-Burgin, A., Szczupak, L., Processing of sensory signals by a non-spiking neuron in the leech (2000) J Comp Physiol a, 186, pp. 989-997 
504 |a Marinesco, S., Wickremasinghe, N., Carew, T.J., Regulation of behavioral and synaptic plasticity by serotonin release within local modulatory fields in the CNS of Aplysia (2006) J Neurosci, 26, pp. 12682-12693 
504 |a Mason, A., Leake, L.D., Morphology of leech retzius cells demonstrated by intracellular injection of horseradish peroxidase (1978) Comp Biochem Physiol, 61, pp. 213-216 
504 |a Mercer, A.R., Emptage, N.J., Carew, T.J., Pharmacological dissociation of modulatory effects of serotonin in Aplysia sensory neurons (1991) Science, 254, pp. 1811-1813 
504 |a Muller, K.J., Nicholls, J.G., Stent, G.S., (1981) Neurobiology of the Leech, , Cold Spring Harbor Laboratory Cold Spring Harbor 
504 |a Nusbaum, M.P., Synaptic basis of swim initiation in the leech. III. Synaptic effects of serotonin-containing interneurones (cells 21 and 61) on swim CPG neurones (cells 18 and 208) (1986) J Exp Biol, 122, pp. 303-321 
504 |a O'Gara, B.A., Illuzzi, F.A., Chung, M., Portnoy, A.D., Fraga, K., Frieman, V.B., Serotonin induces four pharmacologically separable contractile responses in the pharynx of the leech Hirudo medicinalis (1999) Gen Pharmacol, 32, pp. 669-681 
504 |a Perrier, J.F., Hounsgaard, J., 5-HT2 receptors promote plateau potentials in turtle spinal motoneurons by facilitating an L-type calcium current (2003) J Neurophysiol, 89, pp. 954-959 
504 |a Pineyro, G., Blier, P., Autoregulation of serotonin neurons: Role in antidepressant drug action (1999) Pharmacol Rev, 51, pp. 533-591 
504 |a Roberts, C., Price, G.W., Jones, B.J., The role of 5-HT1B/1D receptors in the modulation of 5-hydroxytryptamine levels in the frontal cortex of the conscious guinea pig (1997) Eur J Pharmacol, 326, pp. 23-30 
504 |a Sahley, C.L., What we have learned from the study of learning in the leech (1995) J Neurobiol, 27, pp. 434-445 
504 |a Sanchez-Armass, S., Merz, D.C., Drapeau, P., Distinct receptors, second messengers and conductances underlying the dual responses to serotonin in an identified leech neurone (1991) J Exp Biol, 155, pp. 531-547 
504 |a Sargent, P.B., Yau, K.W., Nicholls, J.G., Extrasynaptic receptors on cell bodies of neurons in central nervous system of the leech (1977) J Neurophysiol, 40, pp. 446-452 
504 |a Schmidt, B.J., Jordan, L.M., The role of serotonin in reflex modulation and locomotor rhythm production in the mammalian spinal cord (2000) Brain Res Bull, 53, pp. 689-710 
504 |a Sombati, S., Hoyle, G., Central nervous sensitization and dishabituation of reflex action in an insect by the neuromodulator octopamine (1984) J Neurobiol, 15, pp. 455-480 
504 |a Sosa, M.A., Spitzer, N., Edwards, D.H., Baro, D.J., A crustacean serotonin receptor: Cloning and distribution in the thoracic ganglia of crayfish and freshwater prawn (2004) J Comp Neurol, 473, pp. 526-537 
504 |a Spitzer, N., Antonsen, B.L., Edwards, D.H., Immunocytochemical mapping and quantification of expression of a putative type 1 serotonin receptor in the crayfish nervous system (2005) J Comp Neurol, 484, pp. 261-282 
504 |a Stamford, J.A., Davidson, C., McLaughlin, D.P., Hopwood, S.E., Control of dorsal raphe 5-HT function by multiple 5-HT(1) autoreceptors: Parallel purposes or pointless plurality? (2000) Trends Neurosci, 23, pp. 459-465 
504 |a Starke, K., Gothert, M., Kilbinger, H., Modulation of neurotransmitter release by presynaptic autoreceptors (1989) Physiol Rev, 69, pp. 864-989 
504 |a Szczupak, L., Jordan, S., Kristan Jr., W.B., Segment-specific modulation of the electrophysiological activity of leech Retzius neurons by acetylcholine (1993) J Exp Biol, 183, pp. 115-135 
504 |a Teshiba, T., Shamsian, A., Yashar, B., Yeh, S.R., Edwards, D.H., Krasne, F.B., Dual and opposing modulatory effects of serotonin on crayfish lateral giant escape command neurons (2001) J Neurosci, 21, pp. 4523-4529 
504 |a Tierney, A.J., Structure and function of invertebrate 5-HT receptors: A review (2001) Comp Biochem Physiol a Mol Integr Physiol, 128, pp. 791-804 
504 |a Wadepuhl, M., A morpho-and physiologically uncommon neuron in the leech CNS (1987) Naturwissenschaften, 74, p. 43 
504 |a Wessel, R., Kristan Jr., W.B., Kleinfeld, D., Supralinear summation of synaptic inputs by an invertebrate neuron: Dendritic gain is mediated by an "inward rectifier" K(+) current (1999) J Neurosci, 19, pp. 5875-5888 
504 |a Willard, A.L., Effects of serotonin on the generation of the motor program for swimming by the medicinal leech (1981) J Neurosci, 1, pp. 936-944 
504 |a Wittenberg, G., Loer, C.M., Adamo, S.A., Kristan Jr., W.B., Segmental specialization of neuronal connectivity in the leech (1990) J Comp Physiol a, 167, pp. 453-459 
504 |a Yuan, Q., Lin, F., Zheng, X., Sehgal, A., Serotonin modulates circadian entrainment in Drosophila (2005) Neuron, 47, pp. 115-127 
504 |a Zar, J.H., (1984) Biostatistical Analysis, , 2nd edition Prentice-Hall Englewood Cliffs NJ 
520 3 |a Serotonin is a conspicuous neuromodulator in the nervous system of many vertebrates and invertebrates. In previous experiments performed in the leech nervous system, we compared the effect of the amine released from endogenous sources [using selective serotonin reuptake inhibitors (SSRIs), e.g. fluoxetine] with that of bath-applied serotonin. The results suggested that the amine does not reach all its targets in a uniform way, but produces the activation of an interneuronal pathway that generated specific synaptic responses on different neurons. Taking into account that the release of the amine is often regulated at the presynaptic level, we have investigated whether autoreceptor antagonists mimic the SSRIs effect. We found that methiothepin (100 μM) produced similar effects than fluoxetine. To further test the hypothesis that endogenous serotonin produce its effect by acting locally at specific sites, we analyzed the effect of iontophoretic applications of serotonin. We found a site in the neuropil of the leech ganglia where serotonin application mimicked the effect of the SSRIs and the 5-HT antagonist. The results further support the view that the effect of serotonin exhibits a spatial specificity that can be relevant to understand its modulatory actions. © 2008 Springer-Verlag.  |l eng 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires, UBACyT 
536 |a Detalles de la financiación: Acknowledgments This work was supported by grants from FIRCA-NIH (USA) and UBACyT (Argentina). The authors thank Mari-ano Rodriguez for helping us with the analysis of the recordings, and also thank him, Sergio Daicz and Dr. Lorena Rela for their discussion of the present manuscript. 
593 |a Dto. de Fisiología, Biología Molecular Y Celular, Facultad de Ciencias Exactas Y Naturales, Pabellón II, 1428 Buenos Aires, Argentina 
593 |a LFBM, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina 
690 1 0 |a 5-HT ANTAGONIST 
690 1 0 |a AUTORECEPTOR 
690 1 0 |a INTERNEURONAL PATHWAY 
690 1 0 |a METHIOTHEPIN 
690 1 0 |a NEUROMODULATION 
690 1 0 |a CYPROHEPTADINE 
690 1 0 |a FLUOXETINE 
690 1 0 |a METITEPINE 
690 1 0 |a SEROTONIN 
690 1 0 |a SEROTONIN ANTAGONIST 
690 1 0 |a SEROTONIN UPTAKE INHIBITOR 
690 1 0 |a ANIMAL 
690 1 0 |a ARTICLE 
690 1 0 |a DRUG EFFECT 
690 1 0 |a ELECTROPHYSIOLOGY 
690 1 0 |a EXCITATORY POSTSYNAPTIC POTENTIAL 
690 1 0 |a GANGLION 
690 1 0 |a HISTOLOGY 
690 1 0 |a IONTOPHORESIS 
690 1 0 |a LEECH 
690 1 0 |a MOTONEURON 
690 1 0 |a NERVE TRACT 
690 1 0 |a NEUROPIL 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a STATISTICAL ANALYSIS 
690 1 0 |a ANIMALS 
690 1 0 |a CYPROHEPTADINE 
690 1 0 |a DATA INTERPRETATION, STATISTICAL 
690 1 0 |a ELECTROPHYSIOLOGY 
690 1 0 |a EXCITATORY POSTSYNAPTIC POTENTIALS 
690 1 0 |a FLUOXETINE 
690 1 0 |a GANGLIA, INVERTEBRATE 
690 1 0 |a IONTOPHORESIS 
690 1 0 |a LEECHES 
690 1 0 |a METHIOTHEPIN 
690 1 0 |a MOTOR NEURONS 
690 1 0 |a NEURAL PATHWAYS 
690 1 0 |a NEUROPIL 
690 1 0 |a SEROTONIN 
690 1 0 |a SEROTONIN ANTAGONISTS 
690 1 0 |a SEROTONIN UPTAKE INHIBITORS 
700 1 |a Szczupak, L. 
773 0 |d 2008  |g v. 194  |h pp. 523-531  |k n. 6  |p J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol.  |x 03407594  |w (AR-BaUEN)CENRE-233  |t Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-43749083030&doi=10.1007%2fs00359-008-0326-2&partnerID=40&md5=61b89238634d5201b3cd3ad02ac3e727  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00359-008-0326-2  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03407594_v194_n6_p523_Calvino  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03407594_v194_n6_p523_Calvino  |y Registro en la Biblioteca Digital 
961 |a paper_03407594_v194_n6_p523_Calvino  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 66866