Permutation entropy of fractional Brownian motion and fractional Gaussian noise

We have worked out theoretical curves for the permutation entropy of the fractional Brownian motion and fractional Gaussian noise by using the Bandt and Shiha [C. Bandt, F. Shiha, J. Time Ser. Anal. 28 (2007) 646] theoretical predictions for their corresponding relative frequencies. Comparisons with...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Zunino, L.
Otros Autores: Pérez, D.G, Martín, M.T, Garavaglia, Mario José, Plastino, Angel Luis, Rosso, O.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2008
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10182caa a22008417a 4500
001 PAPER-5866
003 AR-BaUEN
005 20250821090813.0
008 190411s2008 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-49649105312 
030 |a PYLAA 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Zunino, L. 
245 1 0 |a Permutation entropy of fractional Brownian motion and fractional Gaussian noise 
260 |c 2008 
270 1 0 |m Zunino, L.; Centro de Investigaciones Ópticas, C.C. 124 Correo Central, 1900 La Plata, Argentina; email: lucianoz@ciop.unlp.edu.ar 
504 |a Bandt, C., Pompe, B., (2002) Phys. Rev. Lett., 88, p. 174102 
504 |a Keller, K., Lauffer, H., (2003) Int. J. Bifur. Chaos, 13, p. 2657 
504 |a Cao, Y., Tung, W., Gao, J.B., Protopopescu, V.A., Hively, L.M., (2004) Phys. Rev. E, 70, p. 046217 
504 |a Larrondo, H.A., González, C.M., Martín, M.T., Plastino, A., Rosso, O.A., (2005) Physica A, 356, p. 133 
504 |a Larrondo, H.A., Martín, M.T., González, C.M., Plastino, A., Rosso, O.A., (2006) Phys. Lett. A, 352, p. 421 
504 |a Kowalski, A., Martín, M.T., Plastino, A., Rosso, O.A., (2007) Physica D, 233, p. 21 
504 |a Rosso, O.A., Larrondo, H.A., Martín, M.T., Plastino, A., Fuentes, M.A., (2007) Phys. Rev. Lett., 99, p. 154102 
504 |a Rosso, O., Vicente, R., Mirasso, C., (2007) Phys. Lett. A, 372, p. 1018 
504 |a Mandelbrot, B.B., (1982) The Fractal Geometry of Nature, , W.H. Freeman, New York 
504 |a Voss, R.F., (1992) Phys. Rev. Lett., 68, p. 3805 
504 |a Allegrini, P., Buiatti, M., Grigolini, P., West, B.J., (1998) Phys. Rev. E, 57, p. 4558 
504 |a Su, Z.-Y., Wu, T., (2007) Physica A, 380, p. 418 
504 |a Mandelbrot, B.B., Ness, J.W.V., (1968) SIAM Rev., 4, p. 422 
504 |a Abry, P., Flandrin, P., Taqqu, M.S., Veitch, D., Wavelets for the analysis, estimation, and synthesis of scaling data (2000) Self-similar Network Traffic and Performance Evaluation, pp. 39-87. , Park K., and Willinger W. (Eds), Wiley 
504 |a Chechkin, A.V., Gonchar, V.Y., (2001) Chaos, Solitons & Fractals, 12, p. 391 
504 |a McGaughey, D.R., Aitken, G.J.M., (2002) Physica A, 311, p. 369 
504 |a Zunino, L., Pérez, D., Garavaglia, M., Rosso, O., (2007) Physica A, 379, p. 503 
504 |a Rosso, O.A., Zunino, L., Pérez, D.G., Figliola, A., Larrondo, H.A., Garavaglia, M., Martín, M.T., Plastino, A., (2007) Phys. Rev. E, 76, p. 061114 
504 |a Zunino, L., Pérez, D.G., Martín, M.T., Plastino, A., Garavaglia, M., Rosso, O.A., (2007) Phys. Rev. E, 75, p. 021115 
504 |a Bandt, C., Shiha, F., (2007) J. Time Ser. Anal., 28, p. 646 
504 |a Keller, K., Sinn, M., (2005) Physica A, 356, p. 114 
504 |a Beran, J., Statistics for Long-Memory Processes (1994) Monographs on Statistics and Applied Probability, 61. , Chapman & Hall 
504 |a Bacon, R.H., (1963) Ann. Math. Stat., 34, p. 191 
504 |a Davies, R.B., Harte, D.S., (1987) Biometrika, 74, p. 95 
504 |a Wood, A.T.A., Chan, G., (1994) J. Comput. Graph. Stat., 3 (4), p. 409 
506 |2 openaire  |e Política editorial 
520 3 |a We have worked out theoretical curves for the permutation entropy of the fractional Brownian motion and fractional Gaussian noise by using the Bandt and Shiha [C. Bandt, F. Shiha, J. Time Ser. Anal. 28 (2007) 646] theoretical predictions for their corresponding relative frequencies. Comparisons with numerical simulations show an excellent agreement. Furthermore, the entropy-gap in the transition between these processes, observed previously via numerical results, has been here theoretically validated. Also, we have analyzed the behaviour of the permutation entropy of the fractional Gaussian noise for different time delays. © 2008 Elsevier B.V. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica, 11060512 
536 |a Detalles de la financiación: Australian Research Council 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, 5687/05, 6036/05, PIP 0029/98 
536 |a Detalles de la financiación: Comisión Nacional de Investigación Científica y Tecnológica, CONICYT 
536 |a Detalles de la financiación: Pontificia Universidad Católica de Valparaíso, 123.788/2007 
536 |a Detalles de la financiación: This work was partially supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (PIP 0029/98; 5687/05 and 6036/05), Argentina, Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) (FONDECYT project No. 11060512), Chile, and Pontificia Universidad Católica de Valparaíso (PUCV) (Project No. 123.788/2007), Chile. O.A.R. gratefully acknowledges support from Australian Research Council (ARC) Centre of Excellence in Bioinformatics, Australia. Appendix A For a Gaussian process with stationary increments and embedding dimension D = 3 , Bandt and Shiha (see Ref. [20] , pp. 656–659) found that p ( π 123 ) = p ( π 321 ) = u / 2 and p ( π 132 ) = p ( π 213 ) = p ( π 231 ) = p ( π 312 ) = ( 1 − u ) / 4 . In the case of a stationary Gaussian process with covariance ρ ( τ ) they shown that p ( π 123 ) is given by (A.1) p ( π 123 ) ( τ ) = 1 π arcsin ( 1 π 1 − ρ ( 2 τ ) 1 − ρ ( τ ) ) . Thus, for fractional Gaussian noise we should replace Eq. (8) in the last expression. Since the fractional Brownian motion is a self-similar process, the relative frequencies p ( π i ) do not depend on the value of τ . Moreover, Bandt and Shiha shown that (A.2) p ( π 123 ) ( τ ) = 1 π arcsin ( 2 H − 1 ) for all τ , with H the Hurst parameter. For embedding dimension D = 4 they also found the relative frequencies for these processes. For a stationary Gaussian process and arbitrary τ > 0 , (A.3) p ( π 1234 ) ( τ ) = p ( π 4321 ) ( τ ) = 1 8 + 1 4 π ( arcsin α 1 + 2 arcsin α 2 ) , p ( π 3142 ) ( τ ) = p ( π 2413 ) ( τ ) = 1 8 + 1 4 π ( 2 arcsin α 3 + arcsin α 4 ) , p ( π 4231 ) ( τ ) = p ( π 1324 ) ( τ ) = 1 8 + 1 4 π ( arcsin α 4 − 2 arcsin α 5 ) , p ( π 2143 ) ( τ ) = p ( π 3412 ) ( τ ) = 1 8 + 1 4 π ( 2 arcsin α 6 + arcsin α 1 ) , p ( π 1243 ) ( τ ) = p ( π 2134 ) ( τ ) = p ( π 3421 ) ( τ ) = p ( π 4312 ) ( τ ) = 1 8 + 1 4 π ( arcsin α 7 − arcsin α 1 − arcsin α 5 ) , p ( π 1423 ) ( τ ) = p ( π 4132 ) ( τ ) = p ( π 3241 ) ( τ ) = p ( π 2314 ) ( τ ) = 1 8 + 1 4 π ( arcsin α 7 − arcsin α 4 − arcsin α 5 ) , p ( π 3124 ) ( τ ) = p ( π 1342 ) ( τ ) = p ( π 4213 ) ( τ ) = p ( π 2431 ) ( τ ) = 1 8 + 1 4 π ( arcsin α 3 + arcsin α 8 − arcsin α 5 ) , p ( π 1432 ) ( τ ) = p ( π 4123 ) ( τ ) = p ( π 2341 ) ( τ ) = p ( π 3214 ) ( τ ) = 1 8 + 1 4 π ( arcsin α 6 − arcsin α 8 + arcsin α 2 ) , where (A.4) α 1 = 2 ρ ( 2 τ ) − ρ ( τ ) − ρ ( 3 τ ) 2 [ 1 − ρ ( τ ) ] , α 2 = 2 ρ ( τ ) − ρ ( 2 τ ) − 1 2 [ 1 − ρ ( τ ) ] , α 3 = ρ ( 2 τ ) + ρ ( 3 τ ) − ρ ( τ ) − 1 2 [ 1 − ρ ( 2 τ ) ] [ 1 − ρ ( 3 τ ) ] , α 4 = ρ ( τ ) − ρ ( 3 τ ) 2 [ 1 − ρ ( 2 τ ) ] , α 5 = 1 2 1 − ρ ( 2 τ ) 1 − ρ ( τ ) , α 6 = ρ ( τ ) + ρ ( 3 τ ) − ρ ( 2 τ ) − 1 2 [ 1 − ρ ( τ ) ] [ 1 − ρ ( 3 τ ) ] , α 7 = ρ ( τ ) + ρ ( 2 τ ) − ρ ( 3 τ ) − 1 2 [ 1 − ρ ( τ ) ] [ 1 − ρ ( 2 τ ) ] , α 8 = ρ ( τ ) − ρ ( 2 τ ) [ 1 − ρ ( τ ) ] [ 1 − ρ ( 3 τ ) ] . For fractional Brownian motion, Bandt and Shiha obtained the same formula but with (A.5) α 1 = 1 + 3 2 H − 2 2 H + 1 2 , α 2 = 2 2 H − 1 − 1 , α 3 = 1 − 3 2 H − 2 2 H 2 ⋅ 6 H , α 4 = 3 2 H − 1 2 2 H + 1 , α 5 = 2 H − 1 , α 6 = 2 2 H − 3 2 H − 1 2 ⋅ 3 H , α 7 = 3 2 H − 2 2 H − 1 2 H + 1 , α 8 = 2 2 H − 1 3 H . 
593 |a Centro de Investigaciones Ópticas, C.C. 124 Correo Central, 1900 La Plata, Argentina 
593 |a Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), 1900 La Plata, Argentina 
593 |a Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina 
593 |a Instituto de Física, Pontificia Universidad Católica de Valparaíso (PUCV), 23-40025 Valparaíso, Chile 
593 |a Instituto de Física (IFLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 727, 1900 La Plata, Argentina 
593 |a Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, School of Electrical Engineering and Computer Science, University Drive, Callaghan, NSW 2308, Australia 
593 |a Chaos and Biology Group, Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Pabellon II, Ciudad Universitaria, 1428 Ciudad de Buenos Aires, Argentina 
690 1 0 |a FRACTIONAL BROWNIAN MOTION 
690 1 0 |a FRACTIONAL GAUSSIAN NOISE 
690 1 0 |a PERMUTATION ENTROPY 
700 1 |a Pérez, D.G. 
700 1 |a Martín, M.T. 
700 1 |a Garavaglia, Mario José 
700 1 |a Plastino, Angel Luis 
700 1 |a Rosso, O.A. 
773 0 |d 2008  |g v. 372  |h pp. 4768-4774  |k n. 27-28  |p Phys Lett Sect A Gen At Solid State Phys  |x 03759601  |w (AR-BaUEN)CENRE-348  |t Physics Letters, Section A: General, Atomic and Solid State Physics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-49649105312&doi=10.1016%2fj.physleta.2008.05.026&partnerID=40&md5=2e790a7b14525bdfc7cb8904115e14df  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.physleta.2008.05.026  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03759601_v372_n27-28_p4768_Zunino  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03759601_v372_n27-28_p4768_Zunino  |y Registro en la Biblioteca Digital 
961 |a paper_03759601_v372_n27-28_p4768_Zunino  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 66819