The reductive dissolution of iron oxides by ascorbate. The role of carboxylate anions in accelerating reductive dissolution

There are four general pathways of dissolution of reducible metal oxides in acidic aqueous solution: proton-assisted (acid), ligand-promoted acid, reductive, and ligand-promoted reductive dissolution. The presence and reactivity toward the surface of protons, chelating ligands, and reductants dictat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Dos Santos Afonso, M.
Otros Autores: Morando, P.J, Blesa, M.A, Banwart, S., Stumm, W.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 1990
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07100caa a22007337a 4500
001 PAPER-575
003 AR-BaUEN
005 20230518202955.0
008 190411s1990 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0003153211 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JCISA 
100 1 |a Dos Santos Afonso, M. 
245 1 4 |a The reductive dissolution of iron oxides by ascorbate. The role of carboxylate anions in accelerating reductive dissolution 
260 |c 1990 
270 1 0 |m Blesa, M.A. 
506 |2 openaire  |e Política editorial 
504 |a Blesa, Maroto, (1983) Decontamination of Nuclear Facilities, p. 1. , American Nuclear Society 
504 |a Regazzoni, Blesa, Maroto, (1988) Trans. Tech. Publ., p. 31. , 2nd ed., L.C Dufour, J Nowotny, Aedermannsdorf, Switzerland 
504 |a Chou, Wollast, (1985) Amer. J. Sci., 285, p. 963 
504 |a Schott, Berner, (1983) Geochim. Cosmochim. Acta, 47, p. 2233 
504 |a Blum, Lasaga, (1988) Nature, 331, p. 431 
504 |a Grauer, R., and Stumm, W., Colloid Polym. Sci. 260, 959; Furrer, Stumm, (1986) Geochim. Cosmochim. Acta, 50, p. 847 
504 |a Zinder, Furrer, Stumm, (1986) Geochim. Cosmochim. Acta, 50, p. 1861 
504 |a Valverde, Wagner, (1976) Ber. Bunsenges. Phys. Chem., 80, p. 330 
504 |a Gorichev, Kipriyanov, Regular Kinetic Features of the Dissolution of Metal Oxides in Acidic Media (1984) Russian Chemical Reviews, 53, p. 1039 
504 |a Stone, Morgan, (1987) Aquatic Surface Chemistry, pp. 221-254. , W Stumm, Wiley-Interscience, New York 
504 |a Segal, Sellers, (1984) Adv. Inorg. Bioinorg. Mech., 3, p. 97 
504 |a Sulzberger, Suter, Siffert, Banwart, Stumm, (1988) Mar. Chem., , in press 
504 |a Schwertmann, Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung (1964) Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde, 105, p. 194 
504 |a Blesa, Maroto, (1986) J. Chim. Phys., 83, p. 757 
504 |a Blesa, Matijevic, (1989) Adv. Colloid Interface Sci., 29, p. 173 
504 |a Bruyere, Blesa, Acidic and reductive dissolution of magnetite in aqueous sulfuric acid (1985) Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 182, p. 141 
504 |a Hidalgo, Katz, Maroto, Blesa, The dissolution of magnetite by nitrilotriacetatoferrate(II) (1988) Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 84, p. 9 
504 |a Blesa, Baumgartner, Marinovich, Maroto, (1987) Inorg. Chem., 26, p. 3713 
504 |a Baumgartner, Blesa, Maroto, Kinetics of the dissolution of magnetite in thioglycolic acid solutions (1982) Journal of the Chemical Society, Dalton Transactions, 1, p. 1649 
504 |a Blesa, Maroto, Morando, (1986) J. Chem. Soc. Faraday Trans. I, 82, p. 2345 
504 |a Funai, Blesa, (1986) XVI Arg. Meeting Nucl. Tech., , Cordoba 
504 |a Regazzoni, Urrutia, Blesa, Maroto, (1981) J. Inorg. Nucl. Chem., 43, p. 1489 
504 |a Matijevic, Scheiner, (1978) J. Colloid Interface Sci., 63, p. 509 
504 |a Penners, Koopal, (1986) Colloids Surf., 19, p. 337 
504 |a Stumm, Morgan, (1981) Aquatic Chemistry, , 2nd ed., Wiley-Interscience, New York 
504 |a Kimura, Yamamoto, Yamabe, Kinetics and mechanism of the oxidation of L-ascorbic acid by tris(oxalato)cobaltate(III) and tris(1,10-phenanthroline)iron(III) complexes in aqueous solution (1982) Journal of the Chemical Society, Dalton Transactions, 2, pp. 423-427 
504 |a Pelizzetti, Mentasti, Pramauro, (1976) Inorg. Chem., 15, p. 2898 
504 |a Amjad, Brodovitch, McAuley, (1977) Canad. J. Chem., 55, p. 3581 
504 |a Baumgartner, Blesa, Marinovich, Maroto, (1983) Inorg. Chem., 22, p. 2224 
504 |a Borghi, E., Morando, P. J., and Blesa, M. A., submitted for publication; Khan, Martell, Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. I. Cupric and ferric ion catalyzed oxidation (1967) Journal of the American Chemical Society, 89, p. 4176 
504 |a Khan, Martell, (1967) J. Am. Chem. Soc., 89, p. 7104 
504 |a Borghi, Regazzoni, Maroto, Blesa, (1989) J. Colloid Interface Sci., 130 (2), p. 299 
520 3 |a There are four general pathways of dissolution of reducible metal oxides in acidic aqueous solution: proton-assisted (acid), ligand-promoted acid, reductive, and ligand-promoted reductive dissolution. The presence and reactivity toward the surface of protons, chelating ligands, and reductants dictate the mechanism(s) controlling the dissolution. For the massive reductive dissolution of magnetic by ascorbic acid, the experimental rate law R = k[HA-]1 2[H+] suggests the involvement of surface ≡FeIII A- complexes. Adsorption isotherms of ascorbic acid onto hematite at pH 3 and 25°C yield a Langmuir-type surface complexation constant Ks = (9.57 × 108 M-1). Slow dissolution follows with an empirical rate law R = kobs(≡FeIIIA). It is concluded that the formation and kinetic reactivity of surface complexes determine the rate of dissolution. Dehydroascorbic acid also dissolves magnetite, but at slower rates. Oxalate accelerates the reductive dissolution of hematite by ascorbate even though it competes with ascorbate for surface sites; enhanced detachment of ≡FeII surface species by oxalate complexation may be involved. Autoacceleration of the reductive dissolution by dissolved FeII-carboxylate complexes is observed in EDTA/ascorbic acid mixtures; the rate reaches a maximum at intermediate [EDTA] values, where synergistic effects between EDTA and FeII-EDTA complexes are important. Autoacceleration may also operate in oxalate solutions. © 1990.  |l eng 
593 |a Departamento de Química Inorgánica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Núñez, Buenos Aires, Argentina 
593 |a Institute for Water Resources and Water Pollution Control (EAWAG), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland 
700 1 |a Morando, P.J. 
700 1 |a Blesa, M.A. 
700 1 |a Banwart, S. 
700 1 |a Stumm, W. 
773 0 |d 1990  |g v. 138  |h pp. 74-82  |k n. 1  |p J. Colloid Interface Sci.  |x 00219797  |w (AR-BaUEN)CENRE-15  |t Journal of Colloid And Interface Science 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0003153211&doi=10.1016%2f0021-9797%2890%2990181-M&partnerID=40&md5=4e374e1a6c006f62d8e752d959d982be  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/0021-9797(90)90181-M  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00219797_v138_n1_p74_DosSantosAfonso  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219797_v138_n1_p74_DosSantosAfonso  |y Registro en la Biblioteca Digital 
961 |a paper_00219797_v138_n1_p74_DosSantosAfonso  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI