The reductive dissolution of iron oxides by ascorbate. The role of carboxylate anions in accelerating reductive dissolution
There are four general pathways of dissolution of reducible metal oxides in acidic aqueous solution: proton-assisted (acid), ligand-promoted acid, reductive, and ligand-promoted reductive dissolution. The presence and reactivity toward the surface of protons, chelating ligands, and reductants dictat...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | , , , |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
1990
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
LEADER | 07100caa a22007337a 4500 | ||
---|---|---|---|
001 | PAPER-575 | ||
003 | AR-BaUEN | ||
005 | 20230518202955.0 | ||
008 | 190411s1990 xx ||||fo|||| 00| 0 eng|d | ||
024 | 7 | |2 scopus |a 2-s2.0-0003153211 | |
040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
030 | |a JCISA | ||
100 | 1 | |a Dos Santos Afonso, M. | |
245 | 1 | 4 | |a The reductive dissolution of iron oxides by ascorbate. The role of carboxylate anions in accelerating reductive dissolution |
260 | |c 1990 | ||
270 | 1 | 0 | |m Blesa, M.A. |
506 | |2 openaire |e Política editorial | ||
504 | |a Blesa, Maroto, (1983) Decontamination of Nuclear Facilities, p. 1. , American Nuclear Society | ||
504 | |a Regazzoni, Blesa, Maroto, (1988) Trans. Tech. Publ., p. 31. , 2nd ed., L.C Dufour, J Nowotny, Aedermannsdorf, Switzerland | ||
504 | |a Chou, Wollast, (1985) Amer. J. Sci., 285, p. 963 | ||
504 | |a Schott, Berner, (1983) Geochim. Cosmochim. Acta, 47, p. 2233 | ||
504 | |a Blum, Lasaga, (1988) Nature, 331, p. 431 | ||
504 | |a Grauer, R., and Stumm, W., Colloid Polym. Sci. 260, 959; Furrer, Stumm, (1986) Geochim. Cosmochim. Acta, 50, p. 847 | ||
504 | |a Zinder, Furrer, Stumm, (1986) Geochim. Cosmochim. Acta, 50, p. 1861 | ||
504 | |a Valverde, Wagner, (1976) Ber. Bunsenges. Phys. Chem., 80, p. 330 | ||
504 | |a Gorichev, Kipriyanov, Regular Kinetic Features of the Dissolution of Metal Oxides in Acidic Media (1984) Russian Chemical Reviews, 53, p. 1039 | ||
504 | |a Stone, Morgan, (1987) Aquatic Surface Chemistry, pp. 221-254. , W Stumm, Wiley-Interscience, New York | ||
504 | |a Segal, Sellers, (1984) Adv. Inorg. Bioinorg. Mech., 3, p. 97 | ||
504 | |a Sulzberger, Suter, Siffert, Banwart, Stumm, (1988) Mar. Chem., , in press | ||
504 | |a Schwertmann, Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung (1964) Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde, 105, p. 194 | ||
504 | |a Blesa, Maroto, (1986) J. Chim. Phys., 83, p. 757 | ||
504 | |a Blesa, Matijevic, (1989) Adv. Colloid Interface Sci., 29, p. 173 | ||
504 | |a Bruyere, Blesa, Acidic and reductive dissolution of magnetite in aqueous sulfuric acid (1985) Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 182, p. 141 | ||
504 | |a Hidalgo, Katz, Maroto, Blesa, The dissolution of magnetite by nitrilotriacetatoferrate(II) (1988) Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 84, p. 9 | ||
504 | |a Blesa, Baumgartner, Marinovich, Maroto, (1987) Inorg. Chem., 26, p. 3713 | ||
504 | |a Baumgartner, Blesa, Maroto, Kinetics of the dissolution of magnetite in thioglycolic acid solutions (1982) Journal of the Chemical Society, Dalton Transactions, 1, p. 1649 | ||
504 | |a Blesa, Maroto, Morando, (1986) J. Chem. Soc. Faraday Trans. I, 82, p. 2345 | ||
504 | |a Funai, Blesa, (1986) XVI Arg. Meeting Nucl. Tech., , Cordoba | ||
504 | |a Regazzoni, Urrutia, Blesa, Maroto, (1981) J. Inorg. Nucl. Chem., 43, p. 1489 | ||
504 | |a Matijevic, Scheiner, (1978) J. Colloid Interface Sci., 63, p. 509 | ||
504 | |a Penners, Koopal, (1986) Colloids Surf., 19, p. 337 | ||
504 | |a Stumm, Morgan, (1981) Aquatic Chemistry, , 2nd ed., Wiley-Interscience, New York | ||
504 | |a Kimura, Yamamoto, Yamabe, Kinetics and mechanism of the oxidation of L-ascorbic acid by tris(oxalato)cobaltate(III) and tris(1,10-phenanthroline)iron(III) complexes in aqueous solution (1982) Journal of the Chemical Society, Dalton Transactions, 2, pp. 423-427 | ||
504 | |a Pelizzetti, Mentasti, Pramauro, (1976) Inorg. Chem., 15, p. 2898 | ||
504 | |a Amjad, Brodovitch, McAuley, (1977) Canad. J. Chem., 55, p. 3581 | ||
504 | |a Baumgartner, Blesa, Marinovich, Maroto, (1983) Inorg. Chem., 22, p. 2224 | ||
504 | |a Borghi, E., Morando, P. J., and Blesa, M. A., submitted for publication; Khan, Martell, Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. I. Cupric and ferric ion catalyzed oxidation (1967) Journal of the American Chemical Society, 89, p. 4176 | ||
504 | |a Khan, Martell, (1967) J. Am. Chem. Soc., 89, p. 7104 | ||
504 | |a Borghi, Regazzoni, Maroto, Blesa, (1989) J. Colloid Interface Sci., 130 (2), p. 299 | ||
520 | 3 | |a There are four general pathways of dissolution of reducible metal oxides in acidic aqueous solution: proton-assisted (acid), ligand-promoted acid, reductive, and ligand-promoted reductive dissolution. The presence and reactivity toward the surface of protons, chelating ligands, and reductants dictate the mechanism(s) controlling the dissolution. For the massive reductive dissolution of magnetic by ascorbic acid, the experimental rate law R = k[HA-]1 2[H+] suggests the involvement of surface ≡FeIII A- complexes. Adsorption isotherms of ascorbic acid onto hematite at pH 3 and 25°C yield a Langmuir-type surface complexation constant Ks = (9.57 × 108 M-1). Slow dissolution follows with an empirical rate law R = kobs(≡FeIIIA). It is concluded that the formation and kinetic reactivity of surface complexes determine the rate of dissolution. Dehydroascorbic acid also dissolves magnetite, but at slower rates. Oxalate accelerates the reductive dissolution of hematite by ascorbate even though it competes with ascorbate for surface sites; enhanced detachment of ≡FeII surface species by oxalate complexation may be involved. Autoacceleration of the reductive dissolution by dissolved FeII-carboxylate complexes is observed in EDTA/ascorbic acid mixtures; the rate reaches a maximum at intermediate [EDTA] values, where synergistic effects between EDTA and FeII-EDTA complexes are important. Autoacceleration may also operate in oxalate solutions. © 1990. |l eng | |
593 | |a Departamento de Química Inorgánica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Núñez, Buenos Aires, Argentina | ||
593 | |a Institute for Water Resources and Water Pollution Control (EAWAG), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland | ||
700 | 1 | |a Morando, P.J. | |
700 | 1 | |a Blesa, M.A. | |
700 | 1 | |a Banwart, S. | |
700 | 1 | |a Stumm, W. | |
773 | 0 | |d 1990 |g v. 138 |h pp. 74-82 |k n. 1 |p J. Colloid Interface Sci. |x 00219797 |w (AR-BaUEN)CENRE-15 |t Journal of Colloid And Interface Science | |
856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0003153211&doi=10.1016%2f0021-9797%2890%2990181-M&partnerID=40&md5=4e374e1a6c006f62d8e752d959d982be |y Registro en Scopus |
856 | 4 | 0 | |u https://doi.org/10.1016/0021-9797(90)90181-M |y DOI |
856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_00219797_v138_n1_p74_DosSantosAfonso |y Handle |
856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219797_v138_n1_p74_DosSantosAfonso |y Registro en la Biblioteca Digital |
961 | |a paper_00219797_v138_n1_p74_DosSantosAfonso |b paper |c PE | ||
962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
963 | |a VARI |