Detection and subcellular localization of dehydrin-like proteins in quinoa (Chenopodium quinoa Willd.) embryos

The aim of this study was to characterize the dehydrin content in mature embryos of two quinoa cultivars, Sajama and Baer La Unión. Cultivar Sajama grows at 3600-4000 m altitude and is adapted to the very arid conditions characteristic of the salty soils of the Bolivian Altiplano, with less than 250...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Carjuzaa, P.
Otros Autores: Castellión, M., Distéfano, A.J, Del Vas, M., Maldonado, S.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2008
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15826caa a22012977a 4500
001 PAPER-5734
003 AR-BaUEN
005 20230518203524.0
008 190411s2008 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-51749092625 
024 7 |2 cas  |a dehydrin proteins, plant, 134711-03-8; Plant Proteins 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PROTA 
100 1 |a Carjuzaa, P. 
245 1 0 |a Detection and subcellular localization of dehydrin-like proteins in quinoa (Chenopodium quinoa Willd.) embryos 
260 |c 2008 
270 1 0 |m Maldonado, S.; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, C1428EGA Ciudad de Buenos Aires, Argentina; email: saram@bg.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Allagulova, C.R., Gimalov, F.R., Shakirova, F.M., Vakhitov, V.A., The plant dehydrins: Structure and putative functions (2003) Biochemistry (Moscow), 68, pp. 945-951 
504 |a Asghar, R., Fenton, R.D., Demason, D.A., Close, T.J., Nuclear and cytoplasmic localization of maize embryo and aleurone dehydrin (1994) Protoplasma, 177, pp. 87-94 
504 |a Bertero, H.D., De La Vega, A.J., Correa, G., Jacobsen, S.-E., Mujica, A., Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials (2004) Field Crops Res, 89, pp. 299-318 
504 |a Borovskii, G.B., Stupnikova, I.V., Antipina, A.I., Downs, C.A., Voinikov, V.K., Accumulation of dehydrin-like proteins in the mitochondria of cold-treated plants (2000) J Plant Physiol, 156, pp. 797-800 
504 |a Bradford, M., A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254 
504 |a Brini, F., Hanin, M., Lumbreras, V., Irar, S., Pagès, M., Masmoudi, K., Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance (2007) Plant Sci, 172, pp. 20-28 
504 |a Campbell, S.A., Close, T.J., Dehydrins: Genes, proteins, and associations with phenotypic traits (1997) New Phytol, 137, pp. 61-74 
504 |a Close, T.J., Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins (1996) Physiol Plant, 97, pp. 795-803 
504 |a Close, T.J., Dehydrins: A commonalty in the response of plants to dehydration and low temperature (1997) Physiol Plant, 100, pp. 291-296 
504 |a Close, T.J., Lammers, P.J., An osmotic stress protein of cyanobacteria is immunologically related to plant dehydrins (1993) Plant Physiol, 101, pp. 773-779 
504 |a Close, T.J., Kortt, A.A., Chandler, P.M., A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn (1989) Plant Mol Biol, 13, pp. 95-108 
504 |a Close, T.J., Fenton, R.D., Moonan, F., A view of plant dehydrins using antibodies specific to the carboxy terminal peptide (1993) Plant Mol Biol, 23, pp. 279-286 
504 |a Crane, J., Miller, A.L., Van Roekel, J.W., Walters, C., Triacylglycerols determine the unusual storage physiology of Cuphea seed (2003) Planta, 217, pp. 699-708 
504 |a Danyluk, J., Houde, M., Rassart, É., Sarhan, F., Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant gramineae species (1994) FEBS Lett, 344, pp. 20-24 
504 |a Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N., Sarhan, F., Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat (1998) Plant Cell, 10, pp. 623-638 
504 |a Dure III, L., Crouch, M., Harada, J., Ho, T.H.D., Mundy, J., Quatrano, R., Thomas, T., Sung, Z.R., Common amino acid sequence domains among the LEA proteins of higher plants (1989) Plant Mol Biol, 12, pp. 475-486 
504 |a Egerton-Warburton, L.M., Balsamo, R.A., Close, T.J., Temporal accumulation and ultrastructural localization of dehydrins in Zea mays (1997) Physiol Plant, 101, pp. 545-555 
504 |a Ellis, R.H., Hong, T.D., Roberts, E.H., A low moisture content limit to logarithmic relations between seed moisture content and longevity (1988) Ann Bot, 61, pp. 405-408 
504 |a Farrant, J.M., Pammenter, N.W., Berjak, P., Farnsworth, E.J., Vertucci, C.W., Presence of dehydrin-like proteins and levels of abscisic acid in recalcitrant (desiccation sensitive) seeds may be related to habitat (1996) Seed Sci Res, 6, pp. 175-182 
504 |a Finch-Savage, W.E., Pramanik, S.K., Bewley, J.D., The expression of dehydrin proteins in desiccation-sensitive (recalcitrant) seeds of temperate trees (1994) Planta, 193, pp. 478-485 
504 |a Gee, O.H., Probert, R.J., Coomber, S.A., "dehydrin-like" proteins and desiccation tolerance in seeds (1994) Seed Sci Res, 4, pp. 135-141 
504 |a Goday, A., Jensen, A.B., Cualianezmacia, F.A., Alba, M.M., Figueras, M., Serratosa, J., Torrent, M., Pages, M., The maize abscisic acid-responsive protein RAB17 is located in the nucleus and interacts with nuclear-localization signals (1994) Plant Cell, 6, pp. 351-360 
504 |a Harris, K.F., Pesic-Van Esbroeck, Z., Duffus, J.E., Moderate-temperature polymerization of LR White in a nitrogen atmosphere (1995) Microsc Res Tech, 32, pp. 264-265 
504 |a Heyen, B.J., Alsheikh, M.K., Smith, E.A., Torvik, C.F., Seals, D.F., Randall, S.K., The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation (2002) Plant Physiol, 130, pp. 675-687 
504 |a Ismail, A.M., Hall, A.E., Close, T.J., Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea (1999) Plant Physiol, 120, pp. 237-244 
504 |a Jensen, A.B., Goday, A., Figueras, M., Jessop, A.C., Pages, M., Phosphorylation mediates the nuclear targeting of the maize RAB17 protein (1998) Plant J, 13, pp. 691-697 
504 |a Kermode, A.R., Approaches to elucidate the basis of desiccation-tolerance in seeds (1997) Seed Sci Res, 7, pp. 75-95 
504 |a Kiyosue, T., Yamaguchi-Shinozaki, K., Shinosaki, K., Kamada, H., Harada, H., CDNA cloning of ECP40, an embryogenic-cell protein in carrot, and its expression during somatic and zygotic embryogenesis (1993) Plant Mol Biol, 21, pp. 1053-1068 
504 |a Koag, M.-C., Fenton, R.D., Wilkens, S., Close, T.J., The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity (2003) Plant Physiol, 131, pp. 309-316 
504 |a Koster, K.L., Leopold, A.C., Sugars and desiccation tolerance in seeds (1988) Plant Physiol, 88, pp. 829-832 
504 |a Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685 
504 |a Lopez, C.G., Banowetz, G.M., Peterson, C.J., Kronstad, W.E., Dehydrin expression and drought tolerance in seven wheat cultivars (2003) Crop Sci, 43, pp. 577-582 
504 |a Momma, M., Haraguchi, K., Saito, M., Chikuni, K., Harada, K., Purification and characterization of the acid soluble 26-kDa polypeptide from soybean seeds (1997) Biosci Biotechnol Biochem, 61, pp. 1286-1291 
504 |a Momma, M., Kaneko, S., Haraguchi, K., Matsukura, U., Peptide mapping and assessment of cryoprotective activity of 26/27 kD dehydrin from soybean seeds (2003) Biosci Biotechnol Biochem, 67, pp. 1832-1835 
504 |a Mueller, J.K., Heckathorn, S.A., Fernando, D., Identification of a chloroplast dehydrin in leaves of mature plants (2003) Int J Plant Sci, 164, pp. 535-542 
504 |a Neven, L., Haskell, G.D.W., Hofig, A., Li, Q.B., Guy, C.L., Characterization of a spinach gene responsive to low-temperature and water-stress (1993) Plant Mol Biol, 21, pp. 291-305 
504 |a Nylander, M., Svensson, J., Palva, E.T., Welin, B.V., Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana (2001) Plant Mol Biol, 45, pp. 263-279 
504 |a Panza, V., Distéfano, A.J., Carjuzaa, P., Láinez, V., Del Vas, M., Maldonado, S., Detection of dehydrin-like proteins in embryos and endosperm of mature Euterpe edulis seeds (2007) Protoplasma, 231, pp. 1-5 
504 |a Prego, I., Maldonado, S., Otegui, M., Seed structure and localization of reserves in Chenopodium quinoa (1998) Ann Bot, 82, pp. 481-488 
504 |a Repo-Carrasco, R., Espinoza, C., Jacobsen, S.-E., Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule) (2003) Food Rev Int, 19, pp. 179-189 
504 |a Rinne, P.L.H., Kaikuranta, P.L.M., Van Der Plas, L.H.W., Van Der Schoot, C., Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): Production, localization and potential role in rescuing enzyme function during dehydration (1999) Planta, 209, pp. 377-388 
504 |a Roberts, J.K., Desimone, N.A., Lingle, W.L., Dure III, L., Cellular concentrations and uniformity of cell-type accumulation of two Lea proteins in cotton embryos (1993) Plant Cell, 5, pp. 769-780 
504 |a Robertson, M., Chandler, P.M., A dehydrin cognate protein from pea (Pisum sativum L.) with an atypical pattern of expression (1994) Plant Mol Biol, 26, pp. 805-816 
504 |a Rorat, T., Plant dehydrins tissue location, structure and function (2006) Cell Mol Biol Lett, 11, pp. 536-556 
504 |a Sun, W.Q., Leopold, A.C., Cytoplasmic vitrification and survival of anhydrobiotic organisms (1997) Comp Biochem Physiol Part a, 117, pp. 327-333 
504 |a Svensson, J., (2001) Functional Studies of the Role of Plant Dehydrins in Tolerance to Salinity, Desiccation and Low Temperature, , Doctoral thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden 
504 |a Tapia, M.E., Zonificación agroecológica del cultivo de la quinoa (Chenopodium quinoa Willd) (1999) Primer Taller Internacional Sobre Quinua: Recursos Geneticos Y Sistemas di Produccion, , http://www.rlc.fao.org/prior/segalim/prodalim/prodveg/cdrom/contenido/ libro14/cap1.2.htm, Regional Office for Latin America and the Caribbean, Food and Agriculture Organization of the United Nations, Santiago, Chile. Lima, Perú. (9 July 2007) 
504 |a Turco, E., Close, T.J., Fenton, R.D., Ragazzi, A., Synthesis of dehydrin-like proteins in Quercus ilex L. and Quercus cerris L. seedlings subjected to water stress and infection with Phytophthora cinnamomi (2004) Physiol Mol Plant Pathol, 65, pp. 137-144 
504 |a Werner-Fraczek, J.E., Close, T.J., Genetic studies of Triticeae dehydrins: Assignment of seed proteins and a regulatory factor to map positions (1998) Theor Appl Genet, 97, pp. 220-226 
504 |a Wisniewski, M., Webb, R., Balsamo, R., Close, T.J., Yu, X.M., Griffith, M., Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: A dehydrin from peach (Prunus persica) (1999) Physiol Plant, 105, pp. 600-608 
520 3 |a The aim of this study was to characterize the dehydrin content in mature embryos of two quinoa cultivars, Sajama and Baer La Unión. Cultivar Sajama grows at 3600-4000 m altitude and is adapted to the very arid conditions characteristic of the salty soils of the Bolivian Altiplano, with less than 250 mm of annual rain and a minimum temperature of -1 °C. Cultivar Baer La Unión grows at sea-level regions of central Chile and is adapted to more humid conditions (800 to 1500 mm of annual rain), fertile soils, and temperatures above 5 °C. Western blot analysis of embryo tissues from plants growing under controlled greenhouse conditions clearly revealed the presence of several dehydrin bands (at molecular masses of approximately 30, 32, 50, and 55 kDa), which were common to both cultivars, although the amount of the 30 and 32 kDa bands differed. Nevertheless, when grains originated from their respective natural environments, three extra bands (at molecular masses of approximately 34, 38, and 40 kDa), which were hardly visible in Sajama, and another weak band (at a molecular mass of approximately 28 kDa) were evident in Baer La Unión. In situ immunolocalization microscopy detected dehydrin-like proteins in all axis and cotyledon tissues. At the subcellular level, dehydrins were detected in the plasma membrane, cytoplasm and nucleus. In the cytoplasm, dehydrins were found associated with mitochondria, rough endoplasmic reticulum cisternae, and proplastid membranes. The presence of dehydrins was also recognized in the matrix of protein bodies. In the nucleus, dehydrins were associated with the euchromatin. Upon examining dehydrin composition and subcellular localization in two quinoa cultivars belonging to highly contrasting environments, we conclude that most dehydrins detected here were constitutive components of the quinoa seed developmental program, but some of them (specially the 34, 38, and 40 kDa bands) may reflect quantitative molecular differences associated with the adaptation of both cultivars to contrasting environmental conditions. © 2008 Springer-Verlag.  |l eng 
593 |a Departamento de Biodiversidad Y Biología Experimental, Facultad de Ciencias Exactas Y Naturales, Ciudad de Buenos Aires, Buenos Aires, Argentina 
593 |a Instituto de Biotecnología, Centro de Investigación de Ciencias Veterinarias Y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina 
593 |a Instituto de Recursos Biológicos, Centro de Investigación de Recursos Naturales, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina 
593 |a Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, C1428EGA Ciudad de Buenos Aires, Argentina 
690 1 0 |a CHENOPODIUM QUINOA 
690 1 0 |a DEHYDRIN 
690 1 0 |a ENVIRONMENT 
690 1 0 |a IN SITU IMMUNOLOCALIZATION 
690 1 0 |a QUINOA CULTIVAR 
690 1 0 |a WESTERN BLOT ANALYSIS 
690 1 0 |a DEHYDRIN PROTEINS, PLANT 
690 1 0 |a VEGETABLE PROTEIN 
690 1 0 |a ARTICLE 
690 1 0 |a CELL FRACTIONATION 
690 1 0 |a CHENOPODIUM QUINOA 
690 1 0 |a MERISTEM 
690 1 0 |a METABOLISM 
690 1 0 |a PLANT SEED 
690 1 0 |a PRENATAL DEVELOPMENT 
690 1 0 |a PROTEIN TRANSPORT 
690 1 0 |a ULTRASTRUCTURE 
690 1 0 |a WESTERN BLOTTING 
690 1 0 |a BLOTTING, WESTERN 
690 1 0 |a CHENOPODIUM QUINOA 
690 1 0 |a MERISTEM 
690 1 0 |a PLANT PROTEINS 
690 1 0 |a PROTEIN TRANSPORT 
690 1 0 |a SEEDS 
690 1 0 |a SUBCELLULAR FRACTIONS 
690 1 0 |a CHENOPODIUM QUINOA 
700 1 |a Castellión, M. 
700 1 |a Distéfano, A.J. 
700 1 |a Del Vas, M. 
700 1 |a Maldonado, S. 
773 0 |d 2008  |g v. 233  |h pp. 149-156  |k n. 1-2  |p Protoplasma  |x 0033183X  |w (AR-BaUEN)CENRE-526  |t Protoplasma 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-51749092625&doi=10.1007%2fs00709-008-0300-4&partnerID=40&md5=8af39be9879379889b8f1c8909f05500  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00709-008-0300-4  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0033183X_v233_n1-2_p149_Carjuzaa  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0033183X_v233_n1-2_p149_Carjuzaa  |y Registro en la Biblioteca Digital 
961 |a paper_0033183X_v233_n1-2_p149_Carjuzaa  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 66687