A microscopic study of the deoxyhemoglobin-catalyzed generation of nitric oxide from nitrite anion

There is recent evidence suggesting that nitrite anion (NO2 -) represents the major intravascular NO storage molecule whose transduction to NO is facilitated by a reduction mechanism catalyzed by deoxygenated hemoglobin (deoxy-Hb). In this work, we provide a detailed microscopic study of deoxy-Hb ni...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Perissinotti, L.L
Otros Autores: Marti, M.A, Doctorovich, F., Luque, F.J, Estrin, D.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2008
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15592caa a22013937a 4500
001 PAPER-5710
003 AR-BaUEN
005 20230518203522.0
008 190411s2008 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-51849127392 
024 7 |2 cas  |a ferric ion, 20074-52-6; heme, 14875-96-8; histidine, 645-35-2, 7006-35-1, 71-00-1; nitric oxide, 10102-43-9; nitrite reductase, 9080-03-9; nitrite, 14797-65-0; nitrogen, 7727-37-9; nitrous acid, 7782-77-6; oxygen, 7782-44-7; Anions; deoxyhemoglobin, 9008-02-0; Hemoglobins; Histidine, 71-00-1; Ligands; Nitric Oxide, 10102-43-9; Nitrite Reductases, EC 1.7.-; Nitrites 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a BICHA 
100 1 |a Perissinotti, L.L. 
245 1 2 |a A microscopic study of the deoxyhemoglobin-catalyzed generation of nitric oxide from nitrite anion 
260 |c 2008 
270 1 0 |m Estrin, D. A.; Departamento de Quimica Inorganica, Analitica Y Quimica Fisica/INQUIMAE, Facultad de Ciencias Exactas Y Naturales, Pabellón II, C1428EHA Buenos Aires, Argentina; email: dario@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Gladwin, M.T., Schechter, A.N., NO contest - Nitrite versus S-nitroso-hemoglobin (2004) Circ. Res, 94, pp. 851-855 
504 |a Stamler, J.S., Jaraki, O., Osborne, J., Simon, D.I., Keaney, J., Vita, J., Singel, D., Loscalzo, J., Nitric-oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum-albumin (1992) Proc. Natl. Acad. Sci. U.S.A, 89, pp. 7674-7677 
504 |a Stamler, J.S., Jia, L., Eu, J.P., McMahon, T.J., Demchenko, I.T., Bonaventura, J., Gernert, K., Piantadosi, C.A., Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient (1997) Science, 276, pp. 2034-2037 
504 |a Cosby, K., Partovi, K.S., Crawford, J.H., Patel, R.P., Reiter, C.D., Martyr, S., Yang, B.K., Gladwin, M.T., Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation (2003) Nat. Med, 9, pp. 1498-1505 
504 |a Reutov, V.P., Biochemical predetermination of the NO synthase and nitrite reductase components of the nitric oxide cycle (1999) Biochemistry (Moscow), 64, pp. 528-542 
504 |a Reutov, V.P., Sorokina, E.G., NO-synthase and nitrite-reductase components of nitric oxide cycle (1998) Biochemistry (Moscow), 63, pp. 874-884 
504 |a Brooks, C.L., Characterization of "native" apomyoglobin by molecular dynamics simulation (1992) J. Mol. Biol, 227, pp. 375-380 
504 |a Kim-Shapiro, D.B., Gladwin, M.T., Patel, R.P., Hogg, N., The reaction between nitrite and hemoglobin: The role of nitrite in hemoglobin-mediated hypoxic vasodilation (2005) J. Inorg. Biochem, 99, pp. 237-246 
504 |a Doyle, M.P., Pickering, R.A., Deweert, T.M., Hoekstra, J.W., Pater, D., Kinetics and mechanism of the oxidation of human deoxyhemoglobin by nitrites (1981) J. Biol. Chem, 256, pp. 2393-2398 
504 |a Huang, K.T., Keszler, A., Patel, N., Patel, R.P., Patel, R.P., Gladwin, M.T., Kim-Shapiro, D.B., Hogg, N., The reaction between nitrite and deoxyhemoglobin - Reassessment of reaction kinetics and stoichiometry (2005) J. Biol. Chem, 280, pp. 31126-31131 
504 |a Huang, Z., Shiva, S., Kim-Shapiro, D.B., Patel, R.P., Ringwood, L.A., Irby, C.E., Huang, K.T., Gladwin, M.T., Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control (2005) J. Clin. Invest, 115, pp. 2099-2107 
504 |a Basu, S., Grubina, R., Huang, J., Conradie, J., Huang, Z., Jeffers, A., Jiang, A., Kim-Shapiro, D.B., Catalytic generation of N2O3 by the concerted nitrite reductase and anhydrase activity of hemoglobin (2007) Nat. Chem. Biol, 3, pp. 785-794 
504 |a Williams, P.A., Fulop, V., Garman, E.F., Saunders, N.F.W., Ferguson, S.J., Hajdu, J., Haem-ligand switching during catalysis in crystals of a nitrogen-cycle enzyme (1997) Nature, 389, pp. 406-412 
504 |a George, S.J., Allen, J.W.A., Ferguson, S.J., Thorneley, R.N.F., Time-resolved infrared spectroscopy reveals a stable ferric heme-NO intermediate in the reaction of Paracoccus pantotrophus cytochrome cd(1) nitrite reductase with nitrite (2000) J. Biol. Chem, 275, pp. 33231-33237 
504 |a Marti, M.A., Crespo, A., Bari, S.E., Doctorovich, F.A., Estrin, D.A., QM-MM study of nitrite reduction by nitrite reductase of Pseudomonas aeruginosa (2004) J. Phys. Chem. B, 108, pp. 18073-18080 
504 |a Ranghino, G., Scorza, E., Sjogren, T., Williams, P.A., Ricci, M., Hajdu, J., Quantum mechanical interpretation of nitrite reduction by cytochrome cd(1) nitrite reductase from Paracoccus pantotrophus (2000) Biochemistry, 39, pp. 10958-10966 
504 |a Rinaldo, S., Arcovito, A., Brunori, M., Cutruzzola, F., Fast dissociation of nitric oxide from ferrous Pseudomonas aeruginosa cd1 nitrite reductase - A novel outlook on the catalytic mechanism (2007) J. Biol. Chem, 282, pp. 14761-14767 
504 |a Averill, B.A., Dissimilatory nitrite and nitric oxide reductases (1996) Chem. Rev, 96, pp. 2951-2964 
504 |a Cutruzzola, F., Brown, K., Wilson, E.K., Bellelli, A., Arese, M., Tegoni, M., Cambillau, C., Brunori, M., The nitrite reductase from Pseudomonas aeruginosa: Essential role of two active-site histidines in the catalytic and structural properties (2001) Proc. Natl. Acad. Sci. U.S.A, 98, pp. 2232-2237 
504 |a Wyllie, G.R.A., Scheidt, W.R., Solid-state structures of metalloporphyrin NOx compounds (2002) Chem. Rev, 102, pp. 1067-1089 
504 |a Copeland, D.M., Soares, A.S., West, A.H., Richter-Addo, G.B., Crystal structures of the nitrite and nitric oxide complexes of horse heart myoglobin (2006) J. Inorg. Biochem, 100, pp. 1413-1425 
504 |a Silaghi-Dumitrescu, R., Linkage isomerism in nitrite reduction by cytochrome cd(1) nitrite reductase (2004) Inorg. Chem, 43, pp. 3715-3718 
504 |a Lumme, P., Tummavuo, J., Potentiometric determination of ionization constant of nitrous acid in aqueous sodium perchlorate solutions at 25 degrees C (1965) Acta Chem. Scand, 19, p. 617 
504 |a Seixas, F.A.V., De Azevedo Jr., W.F., Colombo, M.F., Crystallization and X-ray diffraction data analysis of human deoxyhaemoglobin A(o) fully stripped of any anions (1999) Acta Crystallogr., Sect D: Biol. Crystallogr, 55, pp. 1914-1916 
504 |a Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J. Chem. Phys, 79, pp. 926-935 
504 |a Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C., Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes (1977) J. Comput. Phys, 23, pp. 327-341 
504 |a Bayly, C.I., Cieplak, P., Cornell, W.D., Kollman, P.A., A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model (1993) J. Phys. Chem, 97, pp. 10269-10280 
504 |a Frisch, M. J, Trucks, G. W, Schlegel, H. B, Scuseria, G. E, Cheeseman, J. R, Zakrzewski, V. G, Montgomery, J. A, Jr, Stratmann, R, Burant, J, Dapprich, S, Millam, J. M, Daniels, A. D, Kudin, K. N, Strain, M. C, Farkas, O, Tomasi, J, Barone, V, Cossi, M, Cammi, R, Mennucci, B, Pomelli, C, Adamo, C, Clifford, S, Ochterski, J, Petersson, G. A, Ayala, P. Y, Cui, Q, Morokuma, K, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Cioslowski, J, Ortiz, J. V, Baboul, A. G, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Gomperts, R, Martin, R. L, Fox, D. J, Keith, T, Al-Laham, M. A, Peng, C. Y, Nanayakkara, A, Gonzalez, C, Challacombe, M, Gill, P. M. W, Johnson, B, Chen, W, Wong, M. W, Andres, J. L, Gonzalez, C, Head-Gordon, M, Replogle, E. S, and Pople, J. A, 1998 Gaussian 98 Rev. A7, Gaussian, Inc, Pittsburgh, PA; Wang, J.M., Cieplak, P., Kollman, P.A., How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? (2000) J. Comput. Chem, 21, pp. 1049-1074 
504 |a Scherlis, D.A., Estrin, D.A., Hydrogen bonding and O-2 affinity of hemoglobins (2001) J. Am. Chem. Soc, 123, pp. 8436-8437 
504 |a Scherlis, D.A., Marti, M.A., Ordejon, P., Estrin, D.A., Environment effects on chemical reactivity of heme proteins (2002) Int. J. Quantum Chem, 90, pp. 1505-1514 
504 |a Scheidt, W.R., Reed, C.A., Spin-state/stereochemical relationships in iron porphyrins: Implications for the hemoproteins (1981) Chem. Rev, 81, pp. 543-555 
504 |a Soler, J.M., Artacho, E., Gale, J.D., Garcia, A., Junquera, J., Ordejon, P., Sanchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys.: Condens. Matter, 14, pp. 2745-2779 
504 |a Marti, M.A., Crespo, A., Capece, L., Boechi, L., Bikiel, D.E., Scherlis, D.A., Estrin, D.A., Dioxygen affinity in heme proteins investigated by computer simulation (2006) J. Inorg. Biochem, 100, pp. 761-770 
504 |a Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett, 77, pp. 3865-3868 
504 |a Perdew, J.P., Burke, K., Ernzerhof, M., Local and gradient-corrected density functionals (1996) ACS Symp. Ser, 629, pp. 453-462 
504 |a Marti, M.A., Scherlis, D.A., Doctorovich, F.A., Ordejon, P., Estrin, D.A., Modulation of the NO trans effect in heme proteins: Implications for the activation of soluble guanylate cyclase (2003) J. Biol. Inorg. Chem, 8, pp. 595-600 
504 |a Eichinger, M., Tavan, P., Hutter, J., Parrinello, M., A hybrid method for solutes in complex solvents: Density functional theory combined with empirical force fields (1999) J. Chem. Phys, 110, pp. 10452-10467 
504 |a Rovira, C., Schulze, B., Eichinger, M., Evanseck, J.D., Parrinello, M., Influence of the heme pocket conformation on the structure and vibrations of the Fe-CO bond in myoglobin: A QM/MM density functional study (2001) Biophys. J, 81, pp. 435-445 
504 |a Novozhilova, I.V., Coppens, P., Lee, J., Richter-Addo, G.B., Bagley, K.A., Experimental and density functional theoretical investigations of linkage isomerism in six-coordinate {FeNO}6 iron porphyrins with axial nitrosyl and nitro ligands (2006) J. Am. Chem. Soc, 128, pp. 2093-2104 
504 |a Enemark, J.H., Feltham, R.D., Principles of structure, bonding, and reactivity for metal nitrosyl complexes (1974) Coord. Chem. Rev, 13, pp. 339-406 
504 |a Wasser, I.M., De Vries, S., Moenne-Loccoz, P., Schroder, I., Karlin, K.D., Nitric oxide in biological denitrification: Fe/Cu metalloenzyme and metal complex NOx redox chemistry (2002) Chem. Rev, 102, pp. 1201-1234 
504 |a Laverman, L.E., Wanat, A., Oszajca, J., Stochel, G., Ford, P.C., van Eldik, R., Mechanistic studies on the reversible binding of nitric oxide to metmyoglobin (2001) J. Am. Chem. Soc, 123, pp. 285-293 
504 |a Luchsinger, B.P., Rich, E.N., Yan, Y., Williams, E.M., Stamler, J.S., Singel, D.J., Assessments of the chemistry and vasodilatory activity of nitrite with hemoglobin under physiologically relevant conditions (2005) J. Inorg. Biochem, 99, pp. 912-921 
504 |a Coppens, P., Novozhilova, I., Kovalevsky, A., Photo-induced linkage isomers of transition-metal nitrosyl compounds and related complexes (2002) Chem. Rev, 102, pp. 861-884 
504 |a Kujime, M., Fujii, H., Spectroscopic characterization of reaction intermediates in a model for copper nitrite reductase (2006) Angew. Chem., Int. Ed, 45, pp. 1089-1092 
504 |a Suruga, K., Murakami, K., Taniyama, Y., Hama, T., Chida, H., Satoh, T., Yamada, S., Oku, T., A novel microperoxidase activity: Methyl viologen-linked nitrite reducing activity of microperoxidase (2004) Biochem. Biophys. Res. Commun, 315, pp. 815-822 
520 3 |a There is recent evidence suggesting that nitrite anion (NO2 -) represents the major intravascular NO storage molecule whose transduction to NO is facilitated by a reduction mechanism catalyzed by deoxygenated hemoglobin (deoxy-Hb). In this work, we provide a detailed microscopic study of deoxy-Hb nitrite reductase (NIR) activity by combining classical molecular dynamics and hybrid quantum mechanical-molecular mechanical simulations. Our results point out that two alternative mechanisms could be operative and suggest that the most energetic barriers should stem from either reprotonation of the distal histidine or NO dissociation from the ferric heme. In the first proposed mechanism, which is similar to that proposed for bacterial NIRs, nitrite anion or nitrous acid coordinates to the heme through the N atom. This pathway involves HisE7 in a one or two proton transfer process, depending on whether the active species is nitrite anion or nitrous acid, to yield an intermediate Fe(III)NO species which eventually dissociates leading to NO and methemoglobin. In the second mechanism, the nitrite anion coordinates to the heme through the O atom. This pathway requires only one proton transfer from HisE7 and leads directly to the formation of a hydroxo Fe(III) complex and NO. © 2008 American Chemical Society.  |l eng 
593 |a Departamento de Quimica Inorganica, Analitica Y Quimica Fisica/INQUIMAE, Facultad de Ciencias Exactas Y Naturales, Pabellón II, C1428EHA Buenos Aires, Argentina 
593 |a Departament de Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain 
690 1 0 |a NITRIC OXIDE 
690 1 0 |a DEOXY HEMOGLOBIN 
690 1 0 |a MICROSCOPIC STUDY 
690 1 0 |a NITRIC OXIDES 
690 1 0 |a NITRITE ANION 
690 1 0 |a NEGATIVE IONS 
690 1 0 |a DEOXYHEMOGLOBIN 
690 1 0 |a FERRIC ION 
690 1 0 |a HEME 
690 1 0 |a HISTIDINE 
690 1 0 |a METHEMOGLOBIN 
690 1 0 |a NITRIC OXIDE 
690 1 0 |a NITRITE 
690 1 0 |a NITRITE REDUCTASE 
690 1 0 |a NITROGEN 
690 1 0 |a NITROUS ACID 
690 1 0 |a OXYGEN 
690 1 0 |a ARTICLE 
690 1 0 |a CATALYSIS 
690 1 0 |a COMPLEX FORMATION 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a HUMAN 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTON TRANSPORT 
690 1 0 |a QUANTUM MECHANICS 
690 1 0 |a ANIONS 
690 1 0 |a BINDING SITES 
690 1 0 |a CATALYSIS 
690 1 0 |a HEMOGLOBINS 
690 1 0 |a HISTIDINE 
690 1 0 |a HUMANS 
690 1 0 |a LIGANDS 
690 1 0 |a MODELS, MOLECULAR 
690 1 0 |a NITRIC OXIDE 
690 1 0 |a NITRITE REDUCTASES 
690 1 0 |a NITRITES 
690 1 0 |a PROTEIN CONFORMATION 
690 1 0 |a BACTERIA (MICROORGANISMS) 
700 1 |a Marti, M.A. 
700 1 |a Doctorovich, F. 
700 1 |a Luque, F.J. 
700 1 |a Estrin, D.A. 
773 0 |d 2008  |g v. 47  |h pp. 9793-9802  |k n. 37  |p Biochemistry  |x 00062960  |w (AR-BaUEN)CENRE-755  |t Biochemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-51849127392&doi=10.1021%2fbi801104c&partnerID=40&md5=3f1d1af64c3850299a4a4e726a819deb  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/bi801104c  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00062960_v47_n37_p9793_Perissinotti  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00062960_v47_n37_p9793_Perissinotti  |y Registro en la Biblioteca Digital 
961 |a paper_00062960_v47_n37_p9793_Perissinotti  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 66663