An optimization problem related to the best Sobolev trace constant in thin domains
Let Ω ⊂ ℝN be a bounded, smooth domain. We deal with the best constant of the Sobolev trace embedding W1,p(Ω) Rightwards arrow with hook sign Lq (∂Ω) for functions that vanish in a subset A ⊂ Ω, which we call the hole, i.e. we deal with the minimization problem SA = inf||u||W 1,p(ω)p/||u||Lq(∂ω) for...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2008
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 07336caa a22006977a 4500 | ||
|---|---|---|---|
| 001 | PAPER-5664 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518203519.0 | ||
| 008 | 190411s2008 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-51449089699 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Bonder, J.F. | |
| 245 | 1 | 3 | |a An optimization problem related to the best Sobolev trace constant in thin domains |
| 260 | |c 2008 | ||
| 270 | 1 | 0 | |m Bonder, J. F.; Departamento de Matemática, FCEyN UBA (1428), Buenos Aires, Argentina; email: jfbonder@dm.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Aubin, T., Équations différentielles non linéaires et le problème de Yamabe concernant la courbure scalaire (1976) J. Math. Pures Appl, 55, pp. 269-296 | ||
| 504 | |a Biezuner, R.J., Best constants in Sobolev trace inequalities (2003) Nonlinear Anal, 54, pp. 575-589 | ||
| 504 | |a Binding, P., Boulton, L., Cepicka, J., Drabek, P., Girg, P., Basic properties of eigen-functions of the p-Laplacian (2006) Proc. Amer. Math. Soc, 134 (12), pp. 3487-3494 | ||
| 504 | |a Cherkaev, A., Cherkaeva, E., Optimal design for uncertain loading condition (1999) Ser. Adv. Math. Appl. Sci, 50, pp. 193-213. , Homogenization, World Sci. Publishing, River Edge, NJ | ||
| 504 | |a Druet, O., Hebey, E., The AB program in geometric analysis: Sharp Sobolev inequalities and related problems (2002) Mem. Amer. Math. Soc, 160 (761). , viii, 98pp | ||
| 504 | |a del Pino, M., Flores, C., Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains (2001) Comm. Partial Differential Equations, 26 (11-12), pp. 2189-2210 | ||
| 504 | |a Escobar, J.F., Sharp constant in a Sobolev trace inequality (1988) Indiana Math. J, 37 (3), pp. 687-698 | ||
| 504 | |a Fernández Bonder, J., Lami Dozo, E., Rossi, J.D., Symmetry properties for the extremals of the Sobolev trace embedding (2004) Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (6), pp. 795-805 | ||
| 504 | |a Fernandez Bonder, J., Ferreira, R., Rossi, J.D., Uniform bounds for the best Sobolev trace constant (2003) Adv. Nonlinear Stud, 3 (2), pp. 181-192 | ||
| 504 | |a Fernández Bonder, J., Groisman, P., Rossi, J.D., Optimization of the first Steklov eigenvalue in domains with holes: A shape derivative approach (2007) Ann. Mat. Pura Appl, 186 (2), pp. 341-358 | ||
| 504 | |a Fernandez Bonder, J., Martinez, S., Rossi, J.D., The behavior of the best Sobolev trace constant and extremals in thin domains (2004) J. Differential Equations, 198 (1), pp. 129-148 | ||
| 504 | |a Fernández Bonder, J., Rossi, J.D., Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains (2002) Comm. Pure Appl. Anal, 1 (3), pp. 359-378 | ||
| 504 | |a Fernández Bonder, J., Rossi, J.D., Wolanski, N., Behavior of the best Sobolev trace constant and extremals in domains with holes (2006) Bull. Sci. Math, 130, pp. 565-579 | ||
| 504 | |a Fernández Bonder, J., Rossi, J.D., Wolanski, N., Regularity of the free boundary in an optimization problem related to the best Sobolev trace constant (2005) SIAM J. Control Optim, 44 (5), pp. 1614-1635 | ||
| 504 | |a Henrot, A., Minimization problems for eigenvalues of the Laplacian (2003) J. Evol. Equ, 3 (3), pp. 443-461 | ||
| 504 | |a Lami Dozo, E., Torne, O., Symmetry and symmetry breaking for minimizers in the trace inequality (2005) Commun. Contemp. Math, 7 (6), pp. 727-756 | ||
| 504 | |a Li, Y., Zhu, M., Sharp Sobolev trace inequalities on Riemannian manifolds with boundaries (1997) Comm. Pure Appl. Math, 50, pp. 449-487 | ||
| 504 | |a Martinez, S., Rossi, J.D., Isolation and simplicity for the first eigenvalue of the p-Laplacian with a nonlinear boundary condition (2002) Abstr. Appl. Anal, 7 (5), pp. 287-293 | ||
| 520 | 3 | |a Let Ω ⊂ ℝN be a bounded, smooth domain. We deal with the best constant of the Sobolev trace embedding W1,p(Ω) Rightwards arrow with hook sign Lq (∂Ω) for functions that vanish in a subset A ⊂ Ω, which we call the hole, i.e. we deal with the minimization problem SA = inf||u||W 1,p(ω)p/||u||Lq(∂ω) for functions that verify u|A = 0. It is known that there exists an optimal hole that minimizes the best constant SA among subsets of Ω of the prescribed volume. In this paper, we look for optimal holes and extremals in thin domains. We find a limit problem (when the thickness of the domain goes to zero), that is a standard Neumann eigenvalue problem with weights and prove that when the domain is contracted to a segment, it is better to concentrate the hole on one side of the domain. © 2008 World Scientific Publishing Company. |l eng | |
| 536 | |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT2006 – 290 | ||
| 536 | |a Detalles de la financiación: Universidad de Buenos Aires, X078 | ||
| 536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 5478/1438 | ||
| 536 | |a Detalles de la financiación: Austrian Science Fund | ||
| 536 | |a Detalles de la financiación: Austrian Science Fund | ||
| 536 | |a Detalles de la financiación: Vienna Science and Technology Fund, CI06 003 | ||
| 536 | |a Detalles de la financiación: Canadian Blood Services | ||
| 536 | |a Detalles de la financiación: JFB was partially supported by Universidad de Buenos Aires under grant X078, by Agencia Nacional de Promoción Científica y Tecnológica under grant PICT2006 – 290 and by CONICET under grant PIP 5478/1438. | ||
| 536 | |a Detalles de la financiación: CBS was partially supported by the WWTF (Wiener Wissenschafts-, Forschungs-und Technologiefonds) project nr. CI06 003, the PhD program (Wissenschaftskolleg) taking place at the University of Vienna, the FWF (Fonds zur Förderung der wissenschaftlichen Forschung) Wittgenstein award of Peter Markowich, project nr. Z-50 MAT and the FFG (Österreichische Forschungsförderungsgesellschaft), project number 813610. | ||
| 593 | |a Departamento de Matemática, FCEyN UBA (1428), Buenos Aires, Argentina | ||
| 593 | |a IMDEA Matematicas, C-IX Campus UAM, Madrid, Spain | ||
| 593 | |a DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom | ||
| 593 | |a Faculty of Mathematics, University of Vienna, Nordbergstr. 15, 1090, Vienna, Austria | ||
| 690 | 1 | 0 | |a CALCULUS OF VARIATIONS |
| 690 | 1 | 0 | |a OPTIMAL DESIGN |
| 690 | 1 | 0 | |a SOBOLEV TRACE EMBEDDING |
| 700 | 1 | |a Rossi, J.D. | |
| 700 | 1 | |a SchÖnlieb, C.-B. | |
| 773 | 0 | |d 2008 |g v. 10 |h pp. 633-650 |k n. 5 |p Commun. Contemp. Math. |x 02191997 |w (AR-BaUEN)CENRE-4244 |t Communications in Contemporary Mathematics | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-51449089699&doi=10.1142%2fS0219199708002922&partnerID=40&md5=a996cd5dba685ab4df5b4b1f29f25634 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1142/S0219199708002922 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_02191997_v10_n5_p633_Bonder |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02191997_v10_n5_p633_Bonder |y Registro en la Biblioteca Digital |
| 961 | |a paper_02191997_v10_n5_p633_Bonder |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 66617 | ||