Fractional Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy
In this work, we analyze two important stochastic processes, the fractional Brownian motion and fractional Gaussian noise, within the framework of the Tsallis permutation entropy. This entropic measure, evaluated after using the Bandt & Pompe method to extract the associated probability distribu...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , , , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2008
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| Sumario: | In this work, we analyze two important stochastic processes, the fractional Brownian motion and fractional Gaussian noise, within the framework of the Tsallis permutation entropy. This entropic measure, evaluated after using the Bandt & Pompe method to extract the associated probability distribution, is shown to be a powerful tool to characterize fractal stochastic processes. It allows for a better discrimination of the processes than the Shannon counterpart for appropriate ranges of values of the entropic index. Moreover, we find the optimum value of this entropic index for the stochastic processes under study. © 2008 Elsevier B.V. All rights reserved. |
|---|---|
| Bibliografía: | Tsallis, C., Possible generalization of Boltzmann-Gibbs statistics (1988) J. Stat. Phys., 52, pp. 479-487 Havrda, J., Chárvat, F., Quantification methods of classification processes: Concepts of structural α-entropy (1967) Kybernetica, 3, pp. 30-35 Daróczy, Z., Generalized information functions (1970) Inf. Control, 16, pp. 36-51 Alemany, P.A., Zanette, D.H., Fractal random walks from a variational formalism for Tsallis entropies (1994) Phys. Rev. E, 49 (2), pp. R956-R958 Tsallis, C., Nonextensive thermostatistics and fractals (1995) Fractals, 3 (3), pp. 541-547 Capurro, A., Diambra, L., Lorenzo, D., Macadar, O., Martin, M.T., Mostaccio, C., Plastino, A., Velluti, J., Tsallis entropy and cortical dynamics: The analysis of EEG signals (1998) Physica A, 257, pp. 149-155 Tong, S., Bezerianos, A., Paul, J., Zhu, Y., Thakor, N., Nonextensive entropy measure of EEG following brain injury from cardiac arrest (2002) Physica A, 305, pp. 619-628 Tsallis, C., Anteneodo, C., Borland, L., Osorio, R., Nonextensive statistical mechanics and economics (2003) Physica A, 324 (1-2), pp. 89-100 Rosso, O.A., Martín, M.T., Plastino, A., Brain electrical activity analysis using wavelet-based informational tools (II): Tsallis non-extensivity and complexity measures (2003) Physica A, 320, pp. 497-511 Borland, L., Long-range memory and nonextensivity in financial markets (2005) Europhys. News, 36, pp. 228-231 Huang, H., Xie, H., Wang, Z., The analysis of VF and VT with wavelet-based Tsallis information measure (2005) Phys. Lett. A, 336, pp. 180-187 Pérez, D.G., Zunino, L., Martín, M.T., Garavaglia, M., Plastino, A., Rosso, O.A., Model-free stochastic processes studied with q-wavelet-based informational tools (2007) Phys. Lett. A, 364, pp. 259-266 Kalimeri, M., Papadimitriou, C., Balasis, G., Eftaxias, K., Dynamical complexity detection in pre-seismic emissions using nonadditive Tsallis entropy (2008) Physica A, 387, pp. 1161-1172 Tsallis, C., Generalized entropy-based criterion for consistent testing (1998) Phys. Rev. E, 58, pp. 1442-1445 Bandt, C., Pompe, B., Permutation entropy: A natural complexity measure for time series (2002) Phys. Rev. Lett., 88, p. 174102 Keller, K., Lauffer, H., Symbolic analysis of high-dimensional time series (2003) Internat. J. Bifur. Chaos, 13, pp. 2657-2668 Cao, Y., Tung, W., Gao, J.B., Protopopescu, V.A., Hively, L.M., Detecting dynamical changes in time series using the permutation entropy (2004) Phys. Rev. E, 70, p. 046217 Larrondo, H.A., González, C.M., Martín, M.T., Plastino, A., Rosso, O.A., Intensive statistical complexity measure of pseudorandom number generators (2005) Physica A, 356, pp. 133-138 Larrondo, H.A., Martín, M.T., González, C.M., Plastino, A., Rosso, O.A., Random number generators and causality (2006) Phys. Lett. A, 352, pp. 421-425 Kowalski, A., Martín, M.T., Plastino, A., Rosso, O.A., Bandt-Pompe approach to the classical-quantum transition (2007) Physica D, 233, pp. 21-31 Rosso, O.A., Larrondo, H.A., Martín, M.T., Plastino, A., Fuentes, M.A., Distinguishing noise from chaos (2007) Phys. Rev. Lett., 99, p. 154102 Rosso, O., Vicente, R., Mirasso, C., Encryption test of pseudo-aleatory messages embedded on chaotic laser signals: An information theory approach (2008) Phys. Lett. A, 372, pp. 1018-1023 Li, X., Ouyang, G., Richards, D.A., Predictability analysis of absence seizures with permutation entropy (2007) Epilepsy Res., 77, pp. 70-74 Mandelbrot, B.B., (1982) The Fractal Geometry of Nature, , W. H. Freeman, New York Voss, R.F., Evolution of long-range fractal correlations and 1 / f noise in DNA base sequences (1992) Phys. Rev. Lett., 68, pp. 3805-3808 Allegrini, P., Buiatti, M., Grigolini, P., West, B.J., Fractional Brownian motion as a nonstationary process: An alternative paradigm for DNA sequences (1998) Phys. Rev. E, 57, pp. 4558-4567 Su, Z.-Y., Wu, T., Music walk, fractal geometry in music (2007) Physica A, 380, pp. 418-428 Abry, P., Flandrin, P., Taqqu, M.S., Veitch, D., Wavelets for the analysis, estimation, and synthesis of scaling data (2000) Self-similar Network Traffic and Performance Evaluation, pp. 39-87. , Park K., and Willinger W. (Eds), Wiley Chechkin, A.V., Gonchar, V.Y., Fractional Brownian motion approximation based on fractional integration of a white noise (2001) Chaos Solitons Fractals, 12, pp. 391-398 McGaughey, D.R., Aitken, G.J.M., Generating two-dimensional fractional Brownian motion using the fractional Gaussian process (FGp) algorithm (2002) Physica A, 311, pp. 369-380 Zunino, L., Pérez, D., Garavaglia, M., Rosso, O., Wavelet entropy of stochastic processes (2007) Physica A, 379, pp. 503-512 Rosso, O.A., Zunino, L., Pérez, D.G., Figliola, A., Larrondo, H.A., Garavaglia, M., Martín, M.T., Plastino, A., Extracting features of Gaussian self-similar stochastic processes via the Bandt & Pompe approach (2007) Phys. Rev. E, 76, p. 061114 Zunino, L., Pérez, D.G., Martín, M.T., Garavaglia, M., Plastino, A., Rosso, O.A., Permutation entropy of fractional Brownian motion and fractional Gaussian noise (2008) Phys. Lett. A, 372, pp. 4768-4774 Keller, K., Sinn, M., Ordinal analysis of time series (2005) Physica A, 356, pp. 114-120 Zunino, L., Pérez, D.G., Martín, M.T., Plastino, A., Garavaglia, M., Rosso, O.A., Characterization of Gaussian self-similar stochastic processes using wavelet-based informational tools (2007) Phys. Rev. E, 75, p. 021115 Beran, J., Statistics for long-memory processes (1994) Monographs on Statistics and Applied Probability, 61. , Chapman & Hall Bandt, C., Shiha, F., Order patterns in time series (2007) J. Time Ser. Anal., 28, pp. 646-665 Davies, R.B., Harte, D.S., Tests for Hurst effect (1987) Biometrika, 74, pp. 95-102 Wood, A.T.A., Chan, G., Simulation of stationary Gaussian processes in [0, 1]d (1994) J. Comput. Graph. Statist., 3 (4), pp. 409-432 |
| ISSN: | 03784371 |
| DOI: | 10.1016/j.physa.2008.07.004 |