Fractional Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy

In this work, we analyze two important stochastic processes, the fractional Brownian motion and fractional Gaussian noise, within the framework of the Tsallis permutation entropy. This entropic measure, evaluated after using the Bandt & Pompe method to extract the associated probability distribu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Zunino, L.
Otros Autores: Pérez, D.G, Kowalski, A., Martín, M.T, Garavaglia, Mario José, Plastino, Angel Luis, Rosso, O.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2008
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:In this work, we analyze two important stochastic processes, the fractional Brownian motion and fractional Gaussian noise, within the framework of the Tsallis permutation entropy. This entropic measure, evaluated after using the Bandt & Pompe method to extract the associated probability distribution, is shown to be a powerful tool to characterize fractal stochastic processes. It allows for a better discrimination of the processes than the Shannon counterpart for appropriate ranges of values of the entropic index. Moreover, we find the optimum value of this entropic index for the stochastic processes under study. © 2008 Elsevier B.V. All rights reserved.
Bibliografía:Tsallis, C., Possible generalization of Boltzmann-Gibbs statistics (1988) J. Stat. Phys., 52, pp. 479-487
Havrda, J., Chárvat, F., Quantification methods of classification processes: Concepts of structural α-entropy (1967) Kybernetica, 3, pp. 30-35
Daróczy, Z., Generalized information functions (1970) Inf. Control, 16, pp. 36-51
Alemany, P.A., Zanette, D.H., Fractal random walks from a variational formalism for Tsallis entropies (1994) Phys. Rev. E, 49 (2), pp. R956-R958
Tsallis, C., Nonextensive thermostatistics and fractals (1995) Fractals, 3 (3), pp. 541-547
Capurro, A., Diambra, L., Lorenzo, D., Macadar, O., Martin, M.T., Mostaccio, C., Plastino, A., Velluti, J., Tsallis entropy and cortical dynamics: The analysis of EEG signals (1998) Physica A, 257, pp. 149-155
Tong, S., Bezerianos, A., Paul, J., Zhu, Y., Thakor, N., Nonextensive entropy measure of EEG following brain injury from cardiac arrest (2002) Physica A, 305, pp. 619-628
Tsallis, C., Anteneodo, C., Borland, L., Osorio, R., Nonextensive statistical mechanics and economics (2003) Physica A, 324 (1-2), pp. 89-100
Rosso, O.A., Martín, M.T., Plastino, A., Brain electrical activity analysis using wavelet-based informational tools (II): Tsallis non-extensivity and complexity measures (2003) Physica A, 320, pp. 497-511
Borland, L., Long-range memory and nonextensivity in financial markets (2005) Europhys. News, 36, pp. 228-231
Huang, H., Xie, H., Wang, Z., The analysis of VF and VT with wavelet-based Tsallis information measure (2005) Phys. Lett. A, 336, pp. 180-187
Pérez, D.G., Zunino, L., Martín, M.T., Garavaglia, M., Plastino, A., Rosso, O.A., Model-free stochastic processes studied with q-wavelet-based informational tools (2007) Phys. Lett. A, 364, pp. 259-266
Kalimeri, M., Papadimitriou, C., Balasis, G., Eftaxias, K., Dynamical complexity detection in pre-seismic emissions using nonadditive Tsallis entropy (2008) Physica A, 387, pp. 1161-1172
Tsallis, C., Generalized entropy-based criterion for consistent testing (1998) Phys. Rev. E, 58, pp. 1442-1445
Bandt, C., Pompe, B., Permutation entropy: A natural complexity measure for time series (2002) Phys. Rev. Lett., 88, p. 174102
Keller, K., Lauffer, H., Symbolic analysis of high-dimensional time series (2003) Internat. J. Bifur. Chaos, 13, pp. 2657-2668
Cao, Y., Tung, W., Gao, J.B., Protopopescu, V.A., Hively, L.M., Detecting dynamical changes in time series using the permutation entropy (2004) Phys. Rev. E, 70, p. 046217
Larrondo, H.A., González, C.M., Martín, M.T., Plastino, A., Rosso, O.A., Intensive statistical complexity measure of pseudorandom number generators (2005) Physica A, 356, pp. 133-138
Larrondo, H.A., Martín, M.T., González, C.M., Plastino, A., Rosso, O.A., Random number generators and causality (2006) Phys. Lett. A, 352, pp. 421-425
Kowalski, A., Martín, M.T., Plastino, A., Rosso, O.A., Bandt-Pompe approach to the classical-quantum transition (2007) Physica D, 233, pp. 21-31
Rosso, O.A., Larrondo, H.A., Martín, M.T., Plastino, A., Fuentes, M.A., Distinguishing noise from chaos (2007) Phys. Rev. Lett., 99, p. 154102
Rosso, O., Vicente, R., Mirasso, C., Encryption test of pseudo-aleatory messages embedded on chaotic laser signals: An information theory approach (2008) Phys. Lett. A, 372, pp. 1018-1023
Li, X., Ouyang, G., Richards, D.A., Predictability analysis of absence seizures with permutation entropy (2007) Epilepsy Res., 77, pp. 70-74
Mandelbrot, B.B., (1982) The Fractal Geometry of Nature, , W. H. Freeman, New York
Voss, R.F., Evolution of long-range fractal correlations and 1 / f noise in DNA base sequences (1992) Phys. Rev. Lett., 68, pp. 3805-3808
Allegrini, P., Buiatti, M., Grigolini, P., West, B.J., Fractional Brownian motion as a nonstationary process: An alternative paradigm for DNA sequences (1998) Phys. Rev. E, 57, pp. 4558-4567
Su, Z.-Y., Wu, T., Music walk, fractal geometry in music (2007) Physica A, 380, pp. 418-428
Abry, P., Flandrin, P., Taqqu, M.S., Veitch, D., Wavelets for the analysis, estimation, and synthesis of scaling data (2000) Self-similar Network Traffic and Performance Evaluation, pp. 39-87. , Park K., and Willinger W. (Eds), Wiley
Chechkin, A.V., Gonchar, V.Y., Fractional Brownian motion approximation based on fractional integration of a white noise (2001) Chaos Solitons Fractals, 12, pp. 391-398
McGaughey, D.R., Aitken, G.J.M., Generating two-dimensional fractional Brownian motion using the fractional Gaussian process (FGp) algorithm (2002) Physica A, 311, pp. 369-380
Zunino, L., Pérez, D., Garavaglia, M., Rosso, O., Wavelet entropy of stochastic processes (2007) Physica A, 379, pp. 503-512
Rosso, O.A., Zunino, L., Pérez, D.G., Figliola, A., Larrondo, H.A., Garavaglia, M., Martín, M.T., Plastino, A., Extracting features of Gaussian self-similar stochastic processes via the Bandt & Pompe approach (2007) Phys. Rev. E, 76, p. 061114
Zunino, L., Pérez, D.G., Martín, M.T., Garavaglia, M., Plastino, A., Rosso, O.A., Permutation entropy of fractional Brownian motion and fractional Gaussian noise (2008) Phys. Lett. A, 372, pp. 4768-4774
Keller, K., Sinn, M., Ordinal analysis of time series (2005) Physica A, 356, pp. 114-120
Zunino, L., Pérez, D.G., Martín, M.T., Plastino, A., Garavaglia, M., Rosso, O.A., Characterization of Gaussian self-similar stochastic processes using wavelet-based informational tools (2007) Phys. Rev. E, 75, p. 021115
Beran, J., Statistics for long-memory processes (1994) Monographs on Statistics and Applied Probability, 61. , Chapman & Hall
Bandt, C., Shiha, F., Order patterns in time series (2007) J. Time Ser. Anal., 28, pp. 646-665
Davies, R.B., Harte, D.S., Tests for Hurst effect (1987) Biometrika, 74, pp. 95-102
Wood, A.T.A., Chan, G., Simulation of stationary Gaussian processes in [0, 1]d (1994) J. Comput. Graph. Statist., 3 (4), pp. 409-432
ISSN:03784371
DOI:10.1016/j.physa.2008.07.004