Fractional Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy

In this work, we analyze two important stochastic processes, the fractional Brownian motion and fractional Gaussian noise, within the framework of the Tsallis permutation entropy. This entropic measure, evaluated after using the Bandt & Pompe method to extract the associated probability distribu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Zunino, L.
Otros Autores: Pérez, D.G, Kowalski, A., Martín, M.T, Garavaglia, Mario José, Plastino, Angel Luis, Rosso, O.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2008
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14453caa a22012497a 4500
001 PAPER-5652
003 AR-BaUEN
005 20250821090753.0
008 190411s2008 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-49649083517 
030 |a PHYAD 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Zunino, L. 
245 1 0 |a Fractional Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy 
260 |c 2008 
270 1 0 |m Zunino, L.; Centro de Investigaciones Ópticas, C.C. 124 Correo Central, 1900 La Plata, Argentina; email: lucianoz@ciop.unlp.edu.ar 
504 |a Tsallis, C., Possible generalization of Boltzmann-Gibbs statistics (1988) J. Stat. Phys., 52, pp. 479-487 
504 |a Havrda, J., Chárvat, F., Quantification methods of classification processes: Concepts of structural α-entropy (1967) Kybernetica, 3, pp. 30-35 
504 |a Daróczy, Z., Generalized information functions (1970) Inf. Control, 16, pp. 36-51 
504 |a Alemany, P.A., Zanette, D.H., Fractal random walks from a variational formalism for Tsallis entropies (1994) Phys. Rev. E, 49 (2), pp. R956-R958 
504 |a Tsallis, C., Nonextensive thermostatistics and fractals (1995) Fractals, 3 (3), pp. 541-547 
504 |a Capurro, A., Diambra, L., Lorenzo, D., Macadar, O., Martin, M.T., Mostaccio, C., Plastino, A., Velluti, J., Tsallis entropy and cortical dynamics: The analysis of EEG signals (1998) Physica A, 257, pp. 149-155 
504 |a Tong, S., Bezerianos, A., Paul, J., Zhu, Y., Thakor, N., Nonextensive entropy measure of EEG following brain injury from cardiac arrest (2002) Physica A, 305, pp. 619-628 
504 |a Tsallis, C., Anteneodo, C., Borland, L., Osorio, R., Nonextensive statistical mechanics and economics (2003) Physica A, 324 (1-2), pp. 89-100 
504 |a Rosso, O.A., Martín, M.T., Plastino, A., Brain electrical activity analysis using wavelet-based informational tools (II): Tsallis non-extensivity and complexity measures (2003) Physica A, 320, pp. 497-511 
504 |a Borland, L., Long-range memory and nonextensivity in financial markets (2005) Europhys. News, 36, pp. 228-231 
504 |a Huang, H., Xie, H., Wang, Z., The analysis of VF and VT with wavelet-based Tsallis information measure (2005) Phys. Lett. A, 336, pp. 180-187 
504 |a Pérez, D.G., Zunino, L., Martín, M.T., Garavaglia, M., Plastino, A., Rosso, O.A., Model-free stochastic processes studied with q-wavelet-based informational tools (2007) Phys. Lett. A, 364, pp. 259-266 
504 |a Kalimeri, M., Papadimitriou, C., Balasis, G., Eftaxias, K., Dynamical complexity detection in pre-seismic emissions using nonadditive Tsallis entropy (2008) Physica A, 387, pp. 1161-1172 
504 |a Tsallis, C., Generalized entropy-based criterion for consistent testing (1998) Phys. Rev. E, 58, pp. 1442-1445 
504 |a Bandt, C., Pompe, B., Permutation entropy: A natural complexity measure for time series (2002) Phys. Rev. Lett., 88, p. 174102 
504 |a Keller, K., Lauffer, H., Symbolic analysis of high-dimensional time series (2003) Internat. J. Bifur. Chaos, 13, pp. 2657-2668 
504 |a Cao, Y., Tung, W., Gao, J.B., Protopopescu, V.A., Hively, L.M., Detecting dynamical changes in time series using the permutation entropy (2004) Phys. Rev. E, 70, p. 046217 
504 |a Larrondo, H.A., González, C.M., Martín, M.T., Plastino, A., Rosso, O.A., Intensive statistical complexity measure of pseudorandom number generators (2005) Physica A, 356, pp. 133-138 
504 |a Larrondo, H.A., Martín, M.T., González, C.M., Plastino, A., Rosso, O.A., Random number generators and causality (2006) Phys. Lett. A, 352, pp. 421-425 
504 |a Kowalski, A., Martín, M.T., Plastino, A., Rosso, O.A., Bandt-Pompe approach to the classical-quantum transition (2007) Physica D, 233, pp. 21-31 
504 |a Rosso, O.A., Larrondo, H.A., Martín, M.T., Plastino, A., Fuentes, M.A., Distinguishing noise from chaos (2007) Phys. Rev. Lett., 99, p. 154102 
504 |a Rosso, O., Vicente, R., Mirasso, C., Encryption test of pseudo-aleatory messages embedded on chaotic laser signals: An information theory approach (2008) Phys. Lett. A, 372, pp. 1018-1023 
504 |a Li, X., Ouyang, G., Richards, D.A., Predictability analysis of absence seizures with permutation entropy (2007) Epilepsy Res., 77, pp. 70-74 
504 |a Mandelbrot, B.B., (1982) The Fractal Geometry of Nature, , W. H. Freeman, New York 
504 |a Voss, R.F., Evolution of long-range fractal correlations and 1 / f noise in DNA base sequences (1992) Phys. Rev. Lett., 68, pp. 3805-3808 
504 |a Allegrini, P., Buiatti, M., Grigolini, P., West, B.J., Fractional Brownian motion as a nonstationary process: An alternative paradigm for DNA sequences (1998) Phys. Rev. E, 57, pp. 4558-4567 
504 |a Su, Z.-Y., Wu, T., Music walk, fractal geometry in music (2007) Physica A, 380, pp. 418-428 
504 |a Abry, P., Flandrin, P., Taqqu, M.S., Veitch, D., Wavelets for the analysis, estimation, and synthesis of scaling data (2000) Self-similar Network Traffic and Performance Evaluation, pp. 39-87. , Park K., and Willinger W. (Eds), Wiley 
504 |a Chechkin, A.V., Gonchar, V.Y., Fractional Brownian motion approximation based on fractional integration of a white noise (2001) Chaos Solitons Fractals, 12, pp. 391-398 
504 |a McGaughey, D.R., Aitken, G.J.M., Generating two-dimensional fractional Brownian motion using the fractional Gaussian process (FGp) algorithm (2002) Physica A, 311, pp. 369-380 
504 |a Zunino, L., Pérez, D., Garavaglia, M., Rosso, O., Wavelet entropy of stochastic processes (2007) Physica A, 379, pp. 503-512 
504 |a Rosso, O.A., Zunino, L., Pérez, D.G., Figliola, A., Larrondo, H.A., Garavaglia, M., Martín, M.T., Plastino, A., Extracting features of Gaussian self-similar stochastic processes via the Bandt & Pompe approach (2007) Phys. Rev. E, 76, p. 061114 
504 |a Zunino, L., Pérez, D.G., Martín, M.T., Garavaglia, M., Plastino, A., Rosso, O.A., Permutation entropy of fractional Brownian motion and fractional Gaussian noise (2008) Phys. Lett. A, 372, pp. 4768-4774 
504 |a Keller, K., Sinn, M., Ordinal analysis of time series (2005) Physica A, 356, pp. 114-120 
504 |a Zunino, L., Pérez, D.G., Martín, M.T., Plastino, A., Garavaglia, M., Rosso, O.A., Characterization of Gaussian self-similar stochastic processes using wavelet-based informational tools (2007) Phys. Rev. E, 75, p. 021115 
504 |a Beran, J., Statistics for long-memory processes (1994) Monographs on Statistics and Applied Probability, 61. , Chapman & Hall 
504 |a Bandt, C., Shiha, F., Order patterns in time series (2007) J. Time Ser. Anal., 28, pp. 646-665 
504 |a Davies, R.B., Harte, D.S., Tests for Hurst effect (1987) Biometrika, 74, pp. 95-102 
504 |a Wood, A.T.A., Chan, G., Simulation of stationary Gaussian processes in [0, 1]d (1994) J. Comput. Graph. Statist., 3 (4), pp. 409-432 
506 |2 openaire  |e Política editorial 
520 3 |a In this work, we analyze two important stochastic processes, the fractional Brownian motion and fractional Gaussian noise, within the framework of the Tsallis permutation entropy. This entropic measure, evaluated after using the Bandt & Pompe method to extract the associated probability distribution, is shown to be a powerful tool to characterize fractal stochastic processes. It allows for a better discrimination of the processes than the Shannon counterpart for appropriate ranges of values of the entropic index. Moreover, we find the optimum value of this entropic index for the stochastic processes under study. © 2008 Elsevier B.V. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica, 11060512 
536 |a Detalles de la financiación: Australian Research Council 
536 |a Detalles de la financiación: Office for the Advancement of Research, John Jay College of Criminal Justice 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, 5687/05, 6036/05, PIP 0029/98 
536 |a Detalles de la financiación: Comisión Nacional de Investigación Científica y Tecnológica, CONICYT 
536 |a Detalles de la financiación: Pontificia Universidad Católica de Valparaíso, 123.788/2007 
536 |a Detalles de la financiación: This work was partially supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (PIP 0029/98; 5687/05 and 6036/05), Argentina, Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) (FONDECYT project No. 11060512), Chile, and Pontificia Universidad Católica de Valparaíso (PUCV) (Project No. 123.788/2007), Chile. OAR gratefully acknowledges support from Australian Research Council (ARC) Centre of Excellence in Bioinformatics, Australia. Appendix Bandt and Shiha (see Ref.  [37, pp. 656–659] ) have recently found the relative frequencies for a stationary Gaussian process, embedding dimension D = 4 and arbitrary τ > 0 , p ( π 1234 ) ( τ ) = p ( π 4321 ) ( τ ) = 1 8 + 1 4 π ( arcsin α 1 + 2 arcsin α 2 ) , p ( π 3142 ) ( τ ) = p ( π 2413 ) ( τ ) = 1 8 + 1 4 π ( 2 arcsin α 3 + arcsin α 4 ) , p ( π 4231 ) ( τ ) = p ( π 1324 ) ( τ ) = 1 8 + 1 4 π ( arcsin α 4 − 2 arcsin α 5 ) , p ( π 2143 ) ( τ ) = p ( π 3412 ) ( τ ) = 1 8 + 1 4 π ( 2 arcsin α 6 + arcsin α 1 ) , p ( π 1243 ) ( τ ) = p ( π 2134 ) ( τ ) = p ( π 3421 ) ( τ ) = p ( π 4312 ) ( τ ) = 1 8 + 1 4 π ( arcsin α 7 − arcsin α 1 − arcsin α 5 ) , p ( π 1423 ) ( τ ) = p ( π 4132 ) ( τ ) = p ( π 3241 ) ( τ ) = p ( π 2314 ) ( τ ) = 1 8 + 1 4 π ( arcsin α 7 − arcsin α 4 − arcsin α 5 ) , p ( π 3124 ) ( τ ) = p ( π 1342 ) ( τ ) = p ( π 4213 ) ( τ ) = p ( π 2431 ) ( τ ) = 1 8 + 1 4 π ( arcsin α 3 + arcsin α 8 − arcsin α 5 ) , (12) p ( π 1432 ) ( τ ) = p ( π 4123 ) ( τ ) = p ( π 2341 ) ( τ ) = p ( π 3214 ) ( τ ) = 1 8 + 1 4 π ( arcsin α 6 − arcsin α 8 + arcsin α 2 ) , where α 1 = 2 ρ ( 2 τ ) − ρ ( τ ) − ρ ( 3 τ ) 2 [ 1 − ρ ( τ ) ] , α 2 = 2 ρ ( τ ) − ρ ( 2 τ ) − 1 2 [ 1 − ρ ( τ ) ] , α 3 = ρ ( 2 τ ) + ρ ( 3 τ ) − ρ ( τ ) − 1 2 [ 1 − ρ ( 2 τ ) ] [ 1 − ρ ( 3 τ ) ] , α 4 = ρ ( τ ) − ρ ( 3 τ ) 2 [ 1 − ρ ( 2 τ ) ] , α 5 = 1 2 1 − ρ ( 2 τ ) 1 − ρ ( τ ) , α 6 = ρ ( τ ) + ρ ( 3 τ ) − ρ ( 2 τ ) − 1 2 [ 1 − ρ ( τ ) ] [ 1 − ρ ( 3 τ ) ] , (13) α 7 = ρ ( τ ) + ρ ( 2 τ ) − ρ ( 3 τ ) − 1 2 [ 1 − ρ ( τ ) ] [ 1 − ρ ( 2 τ ) ] , α 8 = ρ ( τ ) − ρ ( 2 τ ) [ 1 − ρ ( τ ) ] [ 1 − ρ ( 3 τ ) ] . Thus, for fractional Gaussian noise we should replace Eq. (10) in the last expressions. Since the fractional Brownian motion is a self-similar process, the relative frequencies p ( π i ) do not depend on the value of τ . Moreover, Bandt & Shiha have also obtained the same formulae Eq. (12) for fBm and embedding dimension D = 4 but with α 1 = 1 + 3 2 H − 2 2 H + 1 2 , α 2 = 2 2 H − 1 − 1 , α 3 = 1 − 3 2 H − 2 2 H 2 ⋅ 6 H , α 4 = 3 2 H − 1 2 2 H + 1 , α 5 = 2 H − 1 , α 6 = 2 2 H − 3 2 H − 1 2 ⋅ 3 H , (14) α 7 = 3 2 H − 2 2 H − 1 2 H + 1 , α 8 = 2 2 H − 1 3 H , where H is the Hurst parameter. 
593 |a Centro de Investigaciones Ópticas, C.C. 124 Correo Central, 1900 La Plata, Argentina 
593 |a Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), 1900 La Plata, Argentina 
593 |a Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina 
593 |a Instituto de Física, Pontificia Universidad Católica de Valparaíso (PUCV), 23-40025 Valparaíso, Chile 
593 |a Instituto de Física (IFLP-CCT), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 727, 1900 La Plata, Argentina 
593 |a Buenos Aires Scientific Research Commission (CIC), C.C. 727, 1900 La Plata, Argentina 
593 |a Argentina's National Council (CCT-CONICET), C.C. 727, 1900 La Plata, Argentina 
593 |a Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, School of Electrical Engineering and Computer Science, University Drive, Callaghan, NSW 2308, Australia 
593 |a Chaos and Biology Group, Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Pabellon II, Ciudad Universitaria, 1428 Ciudad de Buenos Aires, Argentina 
690 1 0 |a BANDT & POMPE METHOD 
690 1 0 |a FRACTIONAL BROWNIAN MOTION 
690 1 0 |a FRACTIONAL GAUSSIAN NOISE 
690 1 0 |a TSALLIS ENTROPY 
690 1 0 |a BROWNIAN MOVEMENT 
690 1 0 |a GAUSSIAN NOISE (ELECTRONIC) 
690 1 0 |a RISK ASSESSMENT 
690 1 0 |a STOCHASTIC PROGRAMMING 
690 1 0 |a TRELLIS CODES 
690 1 0 |a ENTROPIC INDEXES 
690 1 0 |a FRACTIONAL BROWNIAN MOTION 
690 1 0 |a FRACTIONAL GAUSSIAN NOISE 
690 1 0 |a OPTIMUM VALUE 
690 1 0 |a PERMUTATION ENTROPY 
690 1 0 |a POW ERFUL TOOL 
690 1 0 |a RANGES OF VALUES 
690 1 0 |a STOCHASTIC PROCESSING 
690 1 0 |a TSALLIS ENTROPY 
690 1 0 |a PROBABILITY DISTRIBUTIONS 
700 1 |a Pérez, D.G. 
700 1 |a Kowalski, A. 
700 1 |a Martín, M.T. 
700 1 |a Garavaglia, Mario José 
700 1 |a Plastino, Angel Luis 
700 1 |a Rosso, O.A. 
773 0 |d 2008  |g v. 387  |h pp. 6057-6068  |k n. 24  |p Phys A Stat Mech Appl  |x 03784371  |w (AR-BaUEN)CENRE-280  |t Physica A: Statistical Mechanics and its Applications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-49649083517&doi=10.1016%2fj.physa.2008.07.004&partnerID=40&md5=d0a326936f5eebd90ddeb053f093fc7c  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.physa.2008.07.004  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03784371_v387_n24_p6057_Zunino  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v387_n24_p6057_Zunino  |y Registro en la Biblioteca Digital 
961 |a paper_03784371_v387_n24_p6057_Zunino  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 66605