Estimates of the best Sobolev constant of the embedding of BV (Ω) into L1(∂Ω) and related shape optimization problems

In this paper we find estimates for the optimal constant in the critical Sobolev trace inequality λ1(Ω) ∥u∥L1(∂Ω) ≤ ∥u∥ W1,1(Ω) that are independent of Ω. These estimates generalize those of [J. Fernandez Bonder, N. Saintier, Estimates for the Sobolev trace constant with critical exponent and applic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Saintier, N.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2008
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06847caa a22007817a 4500
001 PAPER-5651
003 AR-BaUEN
005 20230518203518.0
008 190411s2008 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-79955594365 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a NOAND 
100 1 |a Saintier, N. 
245 1 0 |a Estimates of the best Sobolev constant of the embedding of BV (Ω) into L1(∂Ω) and related shape optimization problems 
260 |b Elsevier Ltd  |c 2008 
270 1 0 |m Saintier, N.; Departamento de Matemática, FCEyN UBA, (1428), Buenos Aires, Argentina; email: nsaintie@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Ambrosio, L., Fusco, N., Pallara, D., Functions of bounded variations and free discontinuity problems (2000) Oxford Mathematical Monographs, , The Clarendon Press, Oxford University Press, New York 
504 |a Andreu, F., Mazon, J.M., Rossi, J.D., The best constant for the Sobolev embedding form W1,1(Ω) into L1(∂Ω) (2004) Nonlinear Anal., 59, pp. 1125-1145 
504 |a Aubin, T., Equations différentielles non-linéaires et le problème de Yamabé concernant la courbure scalaire (1976) J. Math. Pures Appl., 55, pp. 269-296 
504 |a Cherkaev, A., Cherkaeva, E., Optimal design for uncertain loading condition (1999) Ser. Adv. Math. Appl. Sci., 50, pp. 193-213. , Homogenization, World Sci. Publishing, River Edge, NJ 
504 |a Demengel, F., On some nonlinear equation involving the 1-laplacian and trace map inequalities (2002) Nonlinear Anal., 48, pp. 1151-1163 
504 |a Demengel, F., On some nonlinear partial differential equations involving the 1-Laplacian and critical Sobolev exponent (1999) ESAIM, 4, pp. 667-686 
504 |a Druet, O., Hebey, E., The AB program in geometric analysis: Sharp Sobolev inequalities and related problems (2002) Mem. Amer. Math. Soc., 160 
504 |a Evans, L.C., Gariepy, R.F., Measure theory and fine properties of functions (1992) Studies in Advanced Math., , CRC Press, Ann Harbor 
504 |a Fernandez Bonder, J., Saintier, N., Estimates for the Sobolev trace constant with critical exponent and applications Ann. Mat. Pura. Aplicata, , in press 
504 |a Fernández Bonder, J., Rossi, J.D., Wolanski, N., On the best Sobolev trace constant and extremals in domains with holes (2006) Bull. Sci. Math., 130, pp. 565-579 
504 |a Fernández Bonder, J., Rossi, J.D., Wolanski, N., Regularity of the free boundary in an optimization problem related to the best Sobolev trace constant (2006) SIAM J. Control Optim., 44 (5), pp. 1614-1635 
504 |a Giusti, E., Minimal surfaces and functions of bounded variation (1984) Monographs in Mathematics, , Birkhäuser 
504 |a Hebey, E., Saintier, N., Stability and perturbations of the domain for the first eigenvalue of the 1-laplacian (2006) Arch. Math., 86 (4), pp. 340-351 
504 |a Henrot, A., Pierre, M., Variation et optimisation de formes - une analyse géomé trique (2005) Mathématiques et Applications, 48. , Springer, Berlin, New York 
504 |a Ionescu, I.R., Lachand-Robert, T., Generalized Cheeger sets related to landslides (2005) Calc. Var. Partial Differential Equations, 23, pp. 227-249 
504 |a Lions, P.L., The concentration-compactness principle in the calculus of variations - The limit case part. 2 (1985) Rev. Mat. Iberoamericana, 1 (2), pp. 45-121 
504 |a Luckhaus, S., Modica, L., The Gibbs-Thompson relation within the gradient theory of phase transitions ARMA, 107 (1), pp. 71-83 
504 |a Maz'ya, V.G., Sobolev Spaces (1985) Springer Series in Soviet Mathematics, , Berlin, New York 
504 |a Motron, M., Around the best constants for the Sobolev trace map from W 1,1(Ω) into L1(∂Ω) (2002) Asymptot. Anal., 29, pp. 69-90 
504 |a Reshetnyak, Yu.G., Weak convergence of completely additive vector functions on a set (1968) Siberian Math. J., 9, pp. 1039-1045 
504 |a (1968) Sibirskii Mathematicheskii Zhurnal, 9, pp. 1386-1394. , Translated from 
504 |a Saintier, N., Shape Derivative of the First Eigenvalue of the 1-Laplacian, , submitted for publication 
504 |a Ziemer, W.P., Weakly differentiable functions. Sobolev spaces and functions of bounded variations (1989) Graduate Texts in Mathematics, 120. , Springer-Verlag 
520 3 |a In this paper we find estimates for the optimal constant in the critical Sobolev trace inequality λ1(Ω) ∥u∥L1(∂Ω) ≤ ∥u∥ W1,1(Ω) that are independent of Ω. These estimates generalize those of [J. Fernandez Bonder, N. Saintier, Estimates for the Sobolev trace constant with critical exponent and applications, Ann. Mat. Pura. Aplicata (in press)] concerning the p-Laplacian to the case p = 1. We apply our results to prove the existence of an extremal for this embedding.We then study an optimal design problem related to λ1, and eventually compute the shape derivative of the functional Ω → λ1(Ω) © 2007 Elsevier Ltd. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Fondo para la Investigación Científica y Tecnológica, PICT 03-13719 
536 |a Detalles de la financiación: The author acknowledges the support of the grant FONCYT PICT 03-13719 (Argentina) and would like to express his gratitude to Prof. J.D. Rossi for help. 
593 |a Departamento de Matemática, FCEyN UBA, (1428), Buenos Aires, Argentina 
690 1 0 |a 1-LAPLACIAN 
690 1 0 |a CRITICAL EXPONENTS 
690 1 0 |a FUNCTIONS OF BOUNDED VARIATIONS 
690 1 0 |a OPTIMAL DESIGN PROBLEMS 
690 1 0 |a SHAPE ANALYSIS 
690 1 0 |a SOBOLEV TRACE EMBEDDING 
690 1 0 |a OPTIMAL SYSTEMS 
690 1 0 |a OPTIMIZATION 
690 1 0 |a 1-LAPLACIAN 
690 1 0 |a CRITICAL EXPONENT 
690 1 0 |a FUNCTIONS OF BOUNDED VARIATIONS 
690 1 0 |a OPTIMAL DESIGN 
690 1 0 |a SHAPE ANALYSIS 
690 1 0 |a SOBOLEV 
690 1 0 |a SHAPE OPTIMIZATION 
773 0 |d Elsevier Ltd, 2008  |g v. 69  |h pp. 2479-2491  |k n. 8  |p Nonlinear Anal Theory Methods Appl  |x 0362546X  |w (AR-BaUEN)CENRE-254  |t Nonlinear Analysis, Theory, Methods and Applications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955594365&doi=10.1016%2fj.na.2007.08.026&partnerID=40&md5=25267f914f5ffe66a0e4009787d72364  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.na.2007.08.026  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0362546X_v69_n8_p2479_Saintier  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v69_n8_p2479_Saintier  |y Registro en la Biblioteca Digital 
961 |a paper_0362546X_v69_n8_p2479_Saintier  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 66604