Estimation and extrapolation of optimal treatment and testing strategies

We review recent developments in the estimation of an optimal treatment strategy or regime from longitudinal data collected in an observational study. We also propose novel methods for using the data obtained from an observational database in one health-care system to determine the optimal treatment...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Robins, J.
Otros Autores: Orellana, L., Rotnitzky, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2008
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07783caa a22008777a 4500
001 PAPER-5650
003 AR-BaUEN
005 20230607131851.0
008 190411s2008 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-53849122359 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a SMEDD 
100 1 |a Robins, J. 
245 1 0 |a Estimation and extrapolation of optimal treatment and testing strategies 
260 |c 2008 
270 1 0 |m Robins, J.; Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States; email: robins@hsph.harvard.edu 
506 |2 openaire  |e Política editorial 
504 |a Palella, F.J., Deloria-Knoll, M., Chmiel, J.S., Moorman, A.C., Wood, K.C., Greenberg, A.E., Holmberg, S.D., HIV Outpatient Study (HOPS) Investigators. Survival benefit of initiating antiretroviral therapy in HIV-infected persons in different CD4+ cell strata (2003) Annals of Internal Medicine, 138, pp. 620-626 
504 |a Orellana, L., Rotnitzky, A., Robins, J.M., Generalized marginal structural models for estimating optimal treatment regimes (2006), Technical Report, Department of Biostatistics, Harvard School of Public Health; van der Laan MJ. Causal effect models for intention to treat and realistic individualized treatment rules. Working Paper 203, U.C. Berkeley Division of Biostatistics Working Paper Series, 2006. (Available from: http://www.bepress.com/ucbbiostat/paper203.); Robins, J.M., Optimal structural nested models for optimal sequential decisions (2004) Proceedings of the Second Seattle Symposium on Biostatistics, , Lin DY, Heagerty P eds, Springer: New York 
504 |a Murphy, S.A., Optimal dynamic treatment regimes (2003) Journal of the Royal Statistical Society, Series B, 65, pp. 331-366 
504 |a Moodie, E.E.M., Richardson, T.S., Stephens, D., Demystifying optimal dynamic treatment regimes (2007) Biometrics, 63 (2), pp. 447-455 
504 |a Hernán, M.A., Lanoy, E., Costagliola, D., Robins, J.M., Comparison of dynamic treatment regimes via inverse probability weighting (2006) Basic and Clinical Pharmacology and Toxicology, 98, pp. 237-242 
504 |a Lanoy, M., Mary-Krause, P., Tattevin, R., Dray-Spira, C., Duvivier, P., Fischer, Y., Obadia, F., Costagliola, C., the Clinical Epidemiology Group. Predictors identified for losses to follow-up among HIV-seropositive patients (2006) Journal of Clinical Epidemiology, 59 (8), pp. 829-835 
504 |a Robins, J.M., Marginal structural models versus structural nested models as tools for causal inference (1999) Statistical Models in Epidemiology: The Environment and Clinical Trials, pp. 95-134. , Halloran ME, Berry D eds, Springer: New York 
504 |a Robins, J.M., Correcting for non-compliance in randomized trials using structural nested mean models (1994) Communications in Statistics, 23, pp. 2379-2412 
504 |a Scharfstein, D., Rotnitzky, A., Robins, J.M., Adjusting for non-ignorable drop-out using semiparametric non-response models (1999) Journal of the American Statistical Association, 94, pp. 1096-1120 
504 |a Robins, J.M., Sued, M., Lei-Gomez, Q., Rotnitzky, A., Performance of double-robust estimators when 'inverse probability' weights are highly variable. Discussion of demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data, by Kang and Schaffer (2007) Statistical Science, , in press 
504 |a Wang Y, Petersen M, Bangsberg D, van der Laan M. Diagnosing bias in the inverse probability of treatment weighted estimator resulting from violation of experimental treatment assignment. U. C. Berkeley Division of Biostatistics Working Paper Series, 2006. (Available from: http://www.bepress.com/ucbbiostat/paper211/.); Robins, J.M., Rotnitzky, A., Recovery of information and adjustment for dependent censoring using surrogate markers (1992) AIDS Epidemiology - Methodological Issues, pp. 297-331. , eds, Birkhäuser: Boston, MA, includes errata sheet 
504 |a Robins, J.M., Scharfstein, D., Rotnitzky, A., Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models (1999) Statistical Models in Epidemiology: The Environment and Clinical Trials, pp. 1-94. , Halloran ME, Beny D eds, Springer: New York 
520 3 |a We review recent developments in the estimation of an optimal treatment strategy or regime from longitudinal data collected in an observational study. We also propose novel methods for using the data obtained from an observational database in one health-care system to determine the optimal treatment regime for biologically similar subjects in a second health-care system when, for cultural, logistical, or financial reasons, the two health-care systems differ (and will continue to differ) in the frequency of, and reasons for, both laboratory tests and physician visits. Finally, we propose a novel method for estimating the optimal timing of expensive and/or painful diagnostic or prognostic tests. Diagnostic or prognostic tests are only useful in so far as they help a physician to determine the optimal dosing strategy, by providing information on both the current health state and the prognosis of a patient because, in contrast to drug therapies, these tests have no direct causal effect on disease progression. Our new method explicitly incorporates this no direct effect restriction. Copyright © 2008 John Wiley & Sons, Ltd.  |l eng 
593 |a Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States 
593 |a FCEyN, Universidad de Buenos Aries, Buenos Aires, Argentina 
593 |a Department of Economics, Di Tella University, Buenos Aires, Argentina 
593 |a Department of Biostatistics, Harvard School of Public Health, Boston, MA, United States 
690 1 0 |a CAUSAL INFERENCE 
690 1 0 |a DYNAMIC REGIME 
690 1 0 |a MARGINAL STRUCTURAL MODEL 
690 1 0 |a VALUE OF INFORMATION 
690 1 0 |a ANTIRETROVIRUS AGENT 
690 1 0 |a CD4 LYMPHOCYTE COUNT 
690 1 0 |a CLINICAL PROTOCOL 
690 1 0 |a CLINICAL TRIAL 
690 1 0 |a DIAGNOSTIC TEST 
690 1 0 |a DRUG RESPONSE 
690 1 0 |a HEALTH CARE SYSTEM 
690 1 0 |a HEALTH STATUS 
690 1 0 |a HIGHLY ACTIVE ANTIRETROVIRAL THERAPY 
690 1 0 |a HUMAN 
690 1 0 |a HUMAN IMMUNODEFICIENCY VIRUS INFECTION 
690 1 0 |a MEDICAL INFORMATION 
690 1 0 |a OBSERVATIONAL STUDY 
690 1 0 |a PROGNOSIS 
690 1 0 |a REVIEW 
690 1 0 |a RISK ASSESSMENT 
690 1 0 |a STATISTICAL ANALYSIS 
690 1 0 |a STATISTICAL MODEL 
690 1 0 |a SURVIVAL TIME 
690 1 0 |a ANTIRETROVIRAL THERAPY, HIGHLY ACTIVE 
690 1 0 |a BIAS (EPIDEMIOLOGY) 
690 1 0 |a DATA INTERPRETATION, STATISTICAL 
690 1 0 |a HIV INFECTIONS 
690 1 0 |a HUMANS 
690 1 0 |a LONGITUDINAL STUDIES 
690 1 0 |a MODELS, STATISTICAL 
690 1 0 |a PROGNOSIS 
690 1 0 |a TREATMENT OUTCOME 
700 1 |a Orellana, L. 
700 1 |a Rotnitzky, A. 
773 0 |d 2008  |g v. 27  |h pp. 4678-4721  |k n. 23  |p Stat. Med.  |x 02776715  |t Statistics in Medicine 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-53849122359&doi=10.1002%2fsim.3301&partnerID=40&md5=b7ec89db0a3d3e2d8f56386a243c545c  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/sim.3301  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_02776715_v27_n23_p4678_Robins  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02776715_v27_n23_p4678_Robins  |y Registro en la Biblioteca Digital 
961 |a paper_02776715_v27_n23_p4678_Robins  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 66603