Photoinduced reactivity of strongly coupled TiO2 ligands under visible irradiation: An examination of an alizarin red@TiO2 nanoparticulate system

Similarly to alizarin molecules, 3,4-dihydroxy-9,10-dioxo-2- anthracenesulfonate (alizarin red, AR), chelates TiO2 nanoparticles through the catechol moiety, and shifts the absorption threshold of the semiconductor to the visible region. The photoinduced reactivity of the coupled system AR@TiO2 was...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Di Iorio, Y.
Otros Autores: Román, E.S, Litter, M.I, Grela, M.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2008
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13105caa a22016217a 4500
001 PAPER-5642
003 AR-BaUEN
005 20230518203518.0
008 190411s2008 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-55649088037 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Di Iorio, Y. 
245 1 0 |a Photoinduced reactivity of strongly coupled TiO2 ligands under visible irradiation: An examination of an alizarin red@TiO2 nanoparticulate system 
260 |c 2008 
270 1 0 |m Grela, M. A.; Departamento de Química, Universidad Nacional de Mar del Plata, Funes 3350, B7602AYL Mar del Plata, Argentina; email: margrela@mdp.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a (2003) Semiconductor Photochemistry and Photophysics: Molecular and Supramolecular Photochemistry, , Ramamurthy, V, Schanze, K. S, Eds, Marcel Dekker: New York 
504 |a Hebda, M., Stochel, G., Szacilowski, K., Macyk, W., (2006) J. Phys. Chem. B, 110, pp. 15275-15283 
504 |a Argazzi, R., Murakami Iha, N.Y., Zabri, H., Odobel, F., Bignozzi, C.A., (2004) Coord. Chem. Rev, 248, pp. 1299-1316 
504 |a Durrant, J.R., Haque, S.A., Palomares, E., (2004) Coord. Chem. Rev, 248, pp. 1247-1257 
504 |a Tae, E.L., Lee, S.H., Yoo, S.S., Kang, E.J., Yoon, K.B., (2005) J. Phys. Chem. B, 109, pp. 22513-22522 
504 |a Mosurkal, R., He, J.-A., Samuelson, L.A., Kumar, J., (2005) J. Photochem. Photobiol., A, 168, pp. 191-196 
504 |a Frei, H., Fitzmaurice, D., Grätzel, M., (1990) Langmuir, 6, pp. 198-206 
504 |a Moser, J.-E., Punchihewa, S., Infelta, P.P., Grätzel, M., (1991) Langmuir, 7, pp. 3012-3018 
504 |a Houlding, V.H., Grätzel, M., (1983) J. Am. Chem. Soc, 105, pp. 5695-5696 
504 |a Redmond, G., Fitzmaurice, D., (1993) J. Phys. Chem, 97, pp. 6951-6954 
504 |a Rajh, T., Chen, L.X., Lukas, K., Liu, T., Thurnauer, M.C., Tiede, D.M., (2002) J. Phys. Chem. B, 106, pp. 10543-10552 
504 |a Dimitrijevic, N.M., Saponjic, Z.V., Bartels, D.M., Thurnauer, M.C., Tiede, D.M., Rajh, T., (2003) J. Phys. Chem. B, 107, pp. 7368-7375 
504 |a De la Garza, L., Saponjic, Z.V., Dimitrijevic, N.M., Thurnauer, M.C., Rajh, T., (2006) J. Phys. Chem. B, 110, pp. 680-686 
504 |a Rajh, T., Nedeljkovic, J.M., Chen, L.X., Poluekotov, O., Thurnauer, M.C., (1999) J. Phys. Chem. B, 103, pp. 3515-3519 
504 |a Makarova, O.V., Rajh, T., Thurnauer, M.C., Martin, A., Kemme, P.A., Cropek, D., (2000) Environ. Sci. Technol, 34, pp. 4797-4803 
504 |a Rajh, T., Ostafln, A.E., Micic, O.I., Tiede, D.M., Thurnauer, M.C., (1996) J. Phys. Chem, 100, pp. 4538-4545 
504 |a Agrios, A.G., Gray, K.A., Weitz, E., (2003) Langmuir, 19, pp. 1402-1409 
504 |a Kim, S., Choi, W., (2005) J. Phys. Chem. B, 109, pp. 5143-5149 
504 |a Lana-Villarreal, T., Rodes, A., Perez, J.M., Gomez, R., (2005) J. Am. Chem. Soc, 127, pp. 12601-12611 
504 |a Cho, Y., Kyung, H., Choi, W., (2004) Appl. Catal., B, 52, pp. 23-32 
504 |a Paul, T., Miller, P.L., Strathmann, T., (2007) J. Environ. Sci. Technol, 41, pp. 4720-4727 
504 |a Hug, S.J., Sulzberger, B., (1994) Langmuir, 10, pp. 3587-3597 
504 |a Tunesi, S., Anderson, M.A., (1992) Langmuir, 8, pp. 487-495 
504 |a Araujo, P.Z., Mendive, C.B., García Rodenas, L.A., Morando, P.J., Regazzoni, A.E., Blesa, M.A., Bahnemann, D., (2005) Colloids Surf., A, 265, pp. 73-80 
504 |a Huber, R., Sporlein, S., Moser, J.-E., Grätzel, M., Wachtveitl, J., (2000) J. Phys. Chem. B, 104, pp. 8995-9003 
504 |a Huber, R., Moser, J.-E., Grätzel, M., Wachtveitl, J., (2002) J. Phys. Chem. B, 106, pp. 6494-6499 
504 |a Ramakrishna, G., Singh, A.K., Palit, D.K., Ghosh, H.N., (2004) J. Phys. Chem. B, 108, pp. 1701-1707 
504 |a Wang, Y., Hang, K., Anderson, N.A., Lian, T., (2003) J. Phys. Chem. B, 107, pp. 9434-9440 
504 |a Grela, M.A., Colussi, A.J., (1999) J. Phys. Chem. B, 103, pp. 2614-2619 
504 |a Tachikawa, T., Takai, Y., Tojo, S., Fujitsuka, M., Majima, T., (2006) Langmuir, 22, pp. 893-896 
504 |a Minero, C., Mariella, G., Maurino, V., Pelizzetti, E., (2000) Langmuir, 16, pp. 2632-2641 
504 |a Rego, L.G.C., Batista, V.S., (2003) J. Am. Chem. Soc, 125, pp. 7989-7997 
504 |a Duncan, W.R., Stier, W.M., Prezhdo, O.V., (2005) J. Am. Chem. Soc, 127, pp. 7941-7951 
504 |a Stier, W., Duncan, W.R., Prezhdo, O.V., (2004) Adv. Mater, 16, pp. 240-244 
504 |a Duncan, W.R., Craig, C.F., Prezhdo, O.V., (2007) J. Am. Chem. Soc, 129, pp. 8528-8543 
504 |a Perrin, D.D., Armarego, W.L.F., (1988) Purification of Laboratory Chemicals, p. 131. , Pergamon Press: Oxford 
504 |a Wegner, E.E., Adamson, A.W., (1966) J. Am. Chem. Soc, 88, pp. 394-404 
504 |a Kormann, C., Bahnemann, D.W., Hoffmann, M.R., (1988) J. Phys. Chem, 92, pp. 5196-5201 
504 |a Draper, R.B., Fox, M.A., (1990) Langmuir, 6, pp. 1396-1402 
504 |a Weng, Y.-X., Wang, Y.-Q., Asbury, J.B., Ghosh, H.N., Lian, T., (2000) J. Phys. Chem. B, 104, pp. 93-104 
504 |a Choi, W., Termin, A., Hoffmann, M.R., (1994) J. Phsy. Chem, 98, pp. 13669-13679 
504 |a Brusa, M.A., Di Iorio, Y., Churio, M.S., Grela, M.A., (2007) J. Mol. Catal. A: Chem, 268, pp. 29-35 
504 |a Defoin, A., Defoin-Straatmann, R., Hildenbrand, K., Bittersmann, E., Kreft, D., Kuhn, H.J., (1986) J. Photochem, 33, p. 237 
504 |a Kuhn, H.J., Görner, H., (1988) J. Phys. Chem, 92, p. 6208 
504 |a Hatchard, C.G., Parker, C.A., (1956) Proc. R. Soc, 235 A, pp. 518-536 
504 |a Kirk, A.D., Namasivayan, C., (1983) Anal. Chem, 55, pp. 2428-2429 
504 |a (1998) Standard Methods for the Examination of Water and Wastewater, , 20th ed, Clesceri, L. S, Greenberg, A. E, Eaton A. D, Eds, American Public Health Association: Washington, DC 
504 |a Shoute, L.C.T., Loppnow, G.R., (2002) J. Chem. Phys, 117, pp. 842-850 
504 |a Redfern, P.C., Zapol, P., Curtiss, L.A., Rajh, T., Thurnauer, M., (2003) C. J. Phys. Chem. B, 107, pp. 11419-11427 
504 |a Duncan, W., Prezhdo, O.V., (2005) J. Phys. Chem. B, 109, pp. 365-363 
504 |a Jayaweera, P.M., Jayarathne, T.A.U., (2006) Surf. Sci, 600, pp. L297-L300 
504 |a Araujo, P.Z., Morando, P.J., Blesa, M.A., (2005) Langmuir, 21, pp. 3470-3474 
504 |a The IR spectra was calculated at the DFT level of theory using the three-parameter exchange functional of Becke B3LYP and 6-31++G(d) basis set as implemented in the SPARTAN '04 package, Wavefunction Inc; Ramakrinhna, G., Ghosh, H.N., Singh, A.K., Pulit, D.K., Mittal, J.P., (2001) J. Phys. Chem. B, 105, pp. 12786-21276 
504 |a Chen, C., Li, X., Ma, W., Zhao, J., Hidaka, H., Serpone, N., (2002) J. Phys. Chem. B, 106, pp. 318-324 
504 |a Liu, G., Li, X., Zhao, J., Horikoshi, S., Hidaka, H., (2000) J. Mol. Catal. A: Chem, 153, pp. 221-229 
504 |a Wu, T., Liu, G., Zhao, J., Hidaka, H., Serpone, N., (1999) J. Phys. Chem. B, 103, pp. 4862-4867 
504 |a Liu, G., Zhao, J., Hidaka, H., (2000) J. Photochem. Photobiol. A, 133, pp. 83-88 
504 |a Yung, J., Chen, C., Ji, H., Ma, W., Zhao, J., (2005) J. Phys. Chem. B, 109, pp. 21900-21907 
504 |a Biancardo, M., Argazzi, R., Bignozzi, C., (2005) Inorg. Chem, 44, pp. 9619-9621 
504 |a Niki, K., (1985) Standard Potentials in Aqueous Solutions, p. 461. , Bard, A, Parsons, R, Jordan, J, Eds, Marcel Dekker, Inc, New York, Chapter 16, p 
504 |a Testa, J.J., Grela, M.A., Litter, M.I., (2002) Langmuir, 17, pp. 3515-3517 
504 |a Testa, J.J., Grela, M.A., Litter, M.I., (2004) Environ. Sci. Technol, 38, pp. 1589-1594 
504 |a Meichtry, J.M., Brusa, M., Mailhot, G., Grela, M.A., Litter, M.I., (2007) Appl. Catal., B, 71, pp. 101-107 
504 |a Litter, M.I., (1999) Appal. Catal., B, 23, pp. 89-114 
504 |a Kyung, H., Lee, J., Choi, W., (2005) Environ. Sci. Technol, 39, pp. 2376-2382 
504 |a Das, S., Saha, A., Mandal, P.C., (1996) Talanta, 43, pp. 95-102 
504 |a Nejati-Yazdinejad, M., (2006) Anal. Sci, 22, pp. 617-619 
504 |a Bilgic, D., Karaderi, S., Bapli, I., (2007) Rev. Anal. Chem, 26, pp. 99-108 
504 |a García Rodenas, L.A., Weisz, A.D., Magaz, G.E., Blesa, M.A., (2000) J. Colloid Interface Sci, 230, pp. 181-185 
504 |a Using the value of the formation constant for the metal complex of Cr(VI) with alizarin red reported in Table 8.13 of Lange's Handbook of Chemistry, 14th ed, Dean, J, Ed, McGraw-Hill, Inc, New York, log K f, 4.7. we calculated that, after equilibration of this mixture, only 10% of the initial AR remains free |AR]eq ≈ 4 μM; Hodak, J., Quinteros, C., Litter, M.I., San Roman, E., (1996) J. Chem. Soc. Faraday Trans, 92, pp. 5081-5088 
504 |a Botta, S.G., Rodríguez, D.J., Leyva, A.G., Litter, M.I., (2002) Catal. Today, 76, pp. 247-258 
504 |a Murruni, L., Leyva, G., Litter, M.I., (2007) Catal. Today, 129, pp. 127-135 
520 3 |a Similarly to alizarin molecules, 3,4-dihydroxy-9,10-dioxo-2- anthracenesulfonate (alizarin red, AR), chelates TiO2 nanoparticles through the catechol moiety, and shifts the absorption threshold of the semiconductor to the visible region. The photoinduced reactivity of the coupled system AR@TiO2 was investigated through quantum yields determinations in nonscattering sols of TiO2 modified nanoparticles. In contrast with the behavior observed in TiO2 microparticulated systems, the chemisorbed ligand has a high stability under aerated visible light irradiation. The quantum yield for alizarin red oxidation Φ-AR = 4 × 10-4 correlates with the negligible efficiency for oxygen reduction in the constrained environment of the smaller particles, Conversely, reduction of Cr(VI) to Cr(V) in the coupled AR@TiO2 system, confirmed by electron paramagnetic resonance spectroscopy, utilizes a high fraction of the photogenerated electrons and induces the degradation of the complex. Quantum efficiencies for chromium(VI) disappearance, Φ-cr(v1). approaches 37% at [Cr(VI)]0 = 200 μM. The interactions between Cr(VI)/AR and Cr(VI)/TiO2 are analyzed in detail. Spectroscopic evidence is presented for the first time that Cr(VI) forms a charge-transfer complex with TiO2 nanoparticles that could be excited by visible light (λ < 440 nm). The environmental implications of the above findings are briefly discussed. © 2008 American Chemical Society.  |l eng 
593 |a Departamento de Química, Universidad Nacional de Mar del Plata, Funes 3350, B7602AYL Mar del Plata, Argentina 
593 |a INQUIMAE, Facultad de Ciencias Exactas y Naturales, Pahellón 2, 1428 Buenos Aires, Argentina 
593 |a Gerencia Química, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650 San Martín, Prov. de Buenos Aires, Argentina 
593 |a Scuela de Posgrado, Universidad de Gral, San Martín, Peatonal Belgrano 3563, 1er. piso, 1650 San Martín, Prov. de Buenos Aires, Argentina 
650 1 7 |2 spines  |a ARGON 
690 1 0 |a CHEMISORPTION 
690 1 0 |a CHROMIUM 
690 1 0 |a COLLOIDS 
690 1 0 |a ELECTROLYTIC REDUCTION 
690 1 0 |a ELECTRON SPIN RESONANCE SPECTROSCOPY 
690 1 0 |a IRRADIATION 
690 1 0 |a LIGANDS 
690 1 0 |a NANOPARTICLES 
690 1 0 |a NANOSTRUCTURED MATERIALS 
690 1 0 |a NANOSTRUCTURES 
690 1 0 |a OXYGEN 
690 1 0 |a PARAMAGNETIC RESONANCE 
690 1 0 |a PARAMAGNETISM 
690 1 0 |a PHOTODEGRADATION 
690 1 0 |a QUANTUM EFFICIENCY 
690 1 0 |a SYSTEM STABILITY 
690 1 0 |a VEGETATION 
690 1 0 |a CONSTRAINED ENVIRONMENTS 
690 1 0 |a COUPLED SYSTEMS 
690 1 0 |a ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPIES 
690 1 0 |a ENVIRONMENTAL IMPLICATIONS 
690 1 0 |a HIGH STABILITIES 
690 1 0 |a NANOPARTICULATE SYSTEMS 
690 1 0 |a OXYGEN REDUCTIONS 
690 1 0 |a PHOTO INDUCED 
690 1 0 |a PHOTOGENERATED ELECTRONS 
690 1 0 |a SEMI-CONDUCTORS 
690 1 0 |a SPECTROSCOPIC EVIDENCES 
690 1 0 |a VISIBLE IRRADIATIONS 
690 1 0 |a VISIBLE LIGHTS 
690 1 0 |a VISIBLE REGIONS 
690 1 0 |a CHROMIUM COMPOUNDS 
700 1 |a Román, E.S. 
700 1 |a Litter, M.I. 
700 1 |a Grela, M.A. 
773 0 |d 2008  |g v. 112  |h pp. 16532-16538  |k n. 42  |p J. Phys. Chem. C  |x 19327447  |t Journal of Physical Chemistry C 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-55649088037&doi=10.1021%2fjp8040742&partnerID=40&md5=64c1ea4bffe675377c5e7fdd4f6ce437  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/jp8040742  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19327447_v112_n42_p16532_DiIorio  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v112_n42_p16532_DiIorio  |y Registro en la Biblioteca Digital 
961 |a paper_19327447_v112_n42_p16532_DiIorio  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 66595