Fluid-dynamical scheme for equilibrium properties of two trapped fermion species with pairing interactions

We present a generalization of the fluid-dynamical scheme developed for nuclear physics to the case of two trapped fermion species with pairing interactions. To establish a macroscopic description of the mass and momentum conservation laws, we adopt a generalization of the usual Thomas-Fermi approac...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Capuzzi, P.
Otros Autores: Hernández, Ester Susana, Szybisz, L.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2008
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07946caa a22010097a 4500
001 PAPER-5633
003 AR-BaUEN
005 20250506083405.0
008 190411s2008 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-55749090085 
030 |a PLRAA 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Capuzzi, P. 
245 1 0 |a Fluid-dynamical scheme for equilibrium properties of two trapped fermion species with pairing interactions 
260 |c 2008 
270 1 0 |m Capuzzi, P.; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina 
504 |a Demarco, B., Jin, D.S., (1999) Science, 285, p. 1703. , 10.1126/science.285.5434.1703 
504 |a O'Hara, K.M., Hemmer, S.L., Gehm, M.E., Granade, S.R., Gehm, M.E., Thomas, J.E., (2002) Science, 298, p. 2179. , 10.1126/science.1079107 
504 |a Regal, C.A., Jin, D.S., (2003) Phys. Rev. Lett., 90, p. 230404. , 10.1103/PhysRevLett.90.230404 
504 |a Zwierlein, M.W., Stan, C.A., Schunck, C.H., Raupach, S.M.F., Kerman, A.J., Ketterle, W., (2004) Phys. Rev. Lett., 92, p. 120403. , 10.1103/PhysRevLett.92.120403 
504 |a Butts, D.A., Rokhsar, D.S., (1997) Phys. Rev. A, 55, p. 4346. , 10.1103/PhysRevA.55.4346 
504 |a Houbiers, M., Ferwerda, R., Stoof, H.T.C., McAlexander, W.I., Sackett, C.A., Hulet, R.G., (1997) Phys. Rev. A, 56, p. 4864. , 10.1103/PhysRevA.56.4864 
504 |a Bruun, G., Castin, Y., Dum, R., Burnett, K., (1999) Eur. Phys. J. D, 7, p. 433. , 10.1007/s100530050587 
504 |a Urban, M., Schuck, P., (2006) Phys. Rev. A, 73, p. 013621. , 10.1103/PhysRevA.73.013621 
504 |a Urban, M., (2007) Phys. Rev. A, 75, p. 053607. , 10.1103/PhysRevA.75.053607 
504 |a Baranov, M.A., Petrov, D.S., (1998) Phys. Rev. A, 58, p. 801. , 10.1103/PhysRevA.58.R801 
504 |a Urban, M., Schuck, P., (2003) Phys. Rev. A, 67, p. 033611. , 10.1103/PhysRevA.67.033611 
504 |a Bruun, G.M., Clark, C.W., (2000) J. Phys. B, 33, p. 3953. , 10.1088/0953-4075/33/19/310 
504 |a Farine, M., Schuck, P., Viñas, X., (2000) Phys. Rev. A, 62, p. 013608. , 10.1103/PhysRevA.62.013608 
504 |a Cozzini, M., Stringari, S., (2003) Phys. Rev. Lett., 91, p. 070401. , 10.1103/PhysRevLett.91.070401 
504 |a Ring, P., Schuck, P., (1980) The Nuclear Many Body Problem, , Springer, Berlin 
504 |a Di Toro, M., Kolomietz, V.M., (1987) Z. Phys. A, 328, p. 285 
504 |a Grasso, M., Urban, M., (2003) Phys. Rev. A, 68, p. 033610. , 10.1103/PhysRevA.68.033610 
504 |a Bulgac, A., Yu, Y., (2002) Phys. Rev. Lett., 88, p. 042504. , 10.1103/PhysRevLett.88.042504 
504 |a Stajic, J., Chen, Q., Levin, K., (2005) Phys. Rev. Lett., 94, p. 060401. , 10.1103/PhysRevLett.94.060401 
504 |a Heiselberg, H., (2001) Phys. Rev. A, 63, p. 043606. , 10.1103/PhysRevA.63.043606 
504 |a Engelbrecht, J.R., Randeria, M., Sá De Melo, C.A.R., (1997) Phys. Rev. B, 55, p. 15153. , 10.1103/PhysRevB.55.15153 
504 |a Greiner, M., Regal, C.A., Jin, D.S., (2003) Nature (London), 426, p. 537. , 10.1038/nature02199 
504 |a Heiselberg, H., (2004) Phys. Rev. Lett., 93, p. 040402. , 10.1103/PhysRevLett.93.040402 
504 |a Astrakharchik, G.E., Combescot, R., Leyronas, X., Stringari, S., (2005) Phys. Rev. Lett., 95, p. 030404. , 10.1103/PhysRevLett.95.030404 
504 |a Greiner, M., Regal, C.A., Jin, D.S., (2005) Phys. Rev. Lett., 94, p. 070403. , 10.1103/PhysRevLett.94.070403 
504 |a Wong, C.Y., Maruhn, J.A., Welton, T.A., (1975) Nucl. Phys. A, 253, p. 469. , 10.1016/0375-9474(75)90493-5 
504 |a De Gennes, P.G., (1966) Superconductivity of Metals and Alloys, , Benjamin, New York 
504 |a Annett, J.F., (2004) Superconductivity, Superfluids and Condensates, , Oxford University Press, New York 
504 |a Leggett, A.J., (2006) Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems, , Oxford University Press, New York 
504 |a Serene, J.W., Rainer, D., (1983) Phys. Rep., 101, p. 221. , 10.1016/0370-1573(83)90051-0 
504 |a Astrakharchik, G.E., Boronat, J., Casulleras, J., Giorgini, S., (2005) Phys. Rev. Lett., 95, p. 230405. , 10.1103/PhysRevLett.95.230405 
504 |a Papenbrock, T., Bertsch, G.F., (1999) Phys. Rev. C, 59, p. 2052. , 10.1103/PhysRevC.59.2052 
504 |a Carlson, J., Chang, S.Y., Pandharipande, V.R., Schmidt, K.E., (2003) Phys. Rev. Lett., 91, p. 050401. , 10.1103/PhysRevLett.91.050401 
504 |a Astrakharchik, G.E., Boronat, J., Casulleras, J., Giorgini, S., (2004) Phys. Rev. Lett., 93, p. 200404. , 10.1103/PhysRevLett.93.200404 
504 |a Gehm, M.E., Hemmer, S.L., Granade, S.R., O'Hara, K.M., Thomas, J.E., (2003) Phys. Rev. A, 68, p. 011401. , 10.1103/PhysRevA.68.011401 
504 |a Nozières, P., Pines, D., (1990) The Theory of Quantum Liquids, , Addison-Wesley, New York 
504 |a Bès, D.R., Broglia, R.A., (1966) Nucl. Phys., 80, p. 289. , 10.1016/0029-5582(66)90090-3 
504 |a Bohr, A., Mottelson, B.R., (1975) Nuclear Structure, , Benjamin, Reading, MA 
506 |2 openaire  |e Política editorial 
520 3 |a We present a generalization of the fluid-dynamical scheme developed for nuclear physics to the case of two trapped fermion species with pairing interactions. To establish a macroscopic description of the mass and momentum conservation laws, we adopt a generalization of the usual Thomas-Fermi approach that includes the pairing energy. We analyze the equilibrium density and gap profiles for an equal population mixture of harmonically trapped Li6 atoms for different choices of the local equation of state. We examine slight departures from equilibrium within our formulation, finding that density oscillations can propagate as first sound coupled to pairing vibrations, that in a homogeneous fermion system exhibit a Bogoliubov-like quasiparticle spectrum. In this case, the dispersion relation for the coupled modes displays a rich scenario of stable, unstable, and damped regimes. © 2008 The American Physical Society.  |l eng 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas, 1033 Buenos Aires, Argentina 
593 |a Departamento de Física, Comisión Nacional de Energía Atómica, 1428 Buenos Aires, Argentina 
690 1 0 |a EQUATIONS OF STATE 
690 1 0 |a FLOW INTERACTIONS 
690 1 0 |a NUCLEAR PHYSICS 
690 1 0 |a BOGOLIUBOV 
690 1 0 |a COUPLED MODES 
690 1 0 |a DENSITY OSCILLATIONS 
690 1 0 |a DISPERSION RELATIONS 
690 1 0 |a EQUATION OF STATES 
690 1 0 |a EQUILIBRIUM DENSITIES 
690 1 0 |a EQUILIBRIUM PROPERTIES 
690 1 0 |a FERMION SYSTEMS 
690 1 0 |a GAP PROFILES 
690 1 0 |a LI6 ATOMS 
690 1 0 |a MOMENTUM CONSERVATION LAWS 
690 1 0 |a PAIRING INTERACTIONS 
690 1 0 |a QUASIPARTICLE SPECTRUMS 
690 1 0 |a FERMIONS 
700 1 |a Hernández, Ester Susana 
700 1 |a Szybisz, L. 
773 0 |d 2008  |g v. 78  |k n. 4  |p Phys Rev A  |x 10502947  |t Physical Review A - Atomic, Molecular, and Optical Physics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-55749090085&doi=10.1103%2fPhysRevA.78.043619&partnerID=40&md5=04ca76306180c5a2663a61e1a3dba60a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevA.78.043619  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10502947_v78_n4_p_Capuzzi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v78_n4_p_Capuzzi  |y Registro en la Biblioteca Digital 
961 |a paper_10502947_v78_n4_p_Capuzzi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 66586