On the solutions of the causal and anticausal n-dimensional diamond operator

In this paper, we consider the solution of the equation ◇k(p±i0)=∑mi=0Cr ◇rδ, where ◇k is introduced and named as the Diamond operator iterated k-times and is defined by ◇=[(∂2/∂x21+... +∂2/∂x2p)2-(∂2/∂x2p+1+... +∂2/∂x2p+q)2]k Let x = (x1, x2, ..., xn) be a point of the n-dimensional Euclidean space...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Trione, S.E
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2002
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04131caa a22004097a 4500
001 PAPER-5445
003 AR-BaUEN
005 20230518203505.0
008 190411s2002 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0036486853 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Trione, S.E. 
245 1 3 |a On the solutions of the causal and anticausal n-dimensional diamond operator 
260 |c 2002 
270 1 0 |m Trione, S.E.; Departamento de Matemática, Fac. de Ciencias Exactas y Naturales, Instituto Argentino de Matematica, Saavedra 15-3er. Piso-(C1083 ACA), Buenos Aires, Argentina; email: trione@iamba.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Gelfand, I.M., Shilov, G.E., (1964) Generalized Functions, 1. , Academic Press, New York 
504 |a Kananthai, A., On the solutions of the n-dimensional diamond operator (1997) Applied Mathematics and Computation, 88, pp. 27-37 
504 |a Trione, S.E., On the elementary (P ± i0)λ-ultrahyperbolic solution of the Klein-Gordon operator iterated k-times (2000) Integral Transforms and Special Functions, 9 (2), pp. 149-162 
504 |a Nozaki, Y., On the Riemann-Liouville integral of ultra-hyperbolic type (1964) Kodai Mathematical Seminar Reports, 6 (2), pp. 69-87 
504 |a Riesz, M., L'intégrale de Riemann-Liouville et le probléme de Cauchy (1949) Acta. Mathematica, 81, pp. 1-223 
504 |a Trione, S.E., Distributional products (1980) Cursos de Matemática, 3. , IAM-CONICET, Buenos Aires 
504 |a Donoghue, W.F., (1969) Distributions and Fourier Transforms, , Academic Press 
520 3 |a In this paper, we consider the solution of the equation ◇k(p±i0)=∑mi=0Cr ◇rδ, where ◇k is introduced and named as the Diamond operator iterated k-times and is defined by ◇=[(∂2/∂x21+... +∂2/∂x2p)2-(∂2/∂x2p+1+... +∂2/∂x2p+q)2]k Let x = (x1, x2, ..., xn) be a point of the n-dimensional Euclidean space. Consider a non-degenerate quadratic form in n variables of the form P = P(x) = x12+...+xp2- xp+12 - ... - xp+q2, where p + q = n, Cr is a constant, δ is the delta distribution ◇0δ = δ and k = 0, 1, .... The distributions (P ± i0)λ are defined by (P±i0)λ = limε→0{P±iε|x|2}λ where ε > 0, |x|2 = x12 + ... + xn2, λ εC. The distributions (P ± i0)λ are an important contribution of Gelfand (cf. [1], p. 274). The distributions (P ± i0)λ are analytic in λ everywhere except at λ = -n/2 - k, k = 0, 1, ..., where they have simple poles (cf. [1], p. 275). By causal (anticausal) distributions, we mean distributions where P = P(x) = x12 + ... + xn-12 - xn2. The causal distributions are particularly important when n = 4 because they appear frequently in the quantum theory of field. In this note we obtain the solutions of the causal and anticausal n-dimensional Diamond operator by following, line by line, the paper entitled "On the solutions of the n-dimensional Diamond operator" by Amnuay Kananthai (cf. [2]).  |l eng 
593 |a Departamento de Matemática, Fac. de Ciencias Exactas y Naturales, Instituto Argentino de Matematica, Saavedra 15-3er. Piso-(C1083 ACA), Buenos Aires, Argentina 
690 1 0 |a CAUSAL (ANTICAUSAL) SOLUTIONS 
690 1 0 |a DIAMOND OPERATOR 
690 1 0 |a HOMOGENEOUS 
690 1 0 |a TEMPERED DISTRIBUTIONS 
773 0 |d 2002  |g v. 13  |h pp. 49-57  |k n. 1  |p Integr. Transforms Spec. Funct.  |x 10652469  |w (AR-BaUEN)CENRE-5176  |t Integral Transforms and Special Functions 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036486853&doi=10.1080%2f10652460212894&partnerID=40&md5=e3c1885e834cc938cb1dbdedd941979e  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1080/10652460212894  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10652469_v13_n1_p49_Trione  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10652469_v13_n1_p49_Trione  |y Registro en la Biblioteca Digital 
961 |a paper_10652469_v13_n1_p49_Trione  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 66398