β-galactosidase activity as affected by apparent pH and physical properties of reduced moisture systems

Enzymatic activity observed in low moisture systems has been analyzed from several standpoints. The rates of enzymatic reactions depend on many factors, the molecular mobility of the reactants and the properties of the matrices in which they are embedded (pH, viscosity, ionic strength) being often c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Burin, L.
Otros Autores: Del Pilar Buera, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2002
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12741caa a22013097a 4500
001 PAPER-5414
003 AR-BaUEN
005 20230518203503.0
008 190411s2002 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0037070487 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a EMTED 
100 1 |a Burin, L. 
245 1 0 |a β-galactosidase activity as affected by apparent pH and physical properties of reduced moisture systems 
260 |c 2002 
270 1 0 |m Buera, M.D.P.; Departamento de Industrias, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina; email: pilar@di.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Duckworth, R.B., Solute mobility in relation to water content and water activity (1981) Water activity: influences on food quality, pp. 295-317. , Rockland LB, Stewart GF, editors. New York: Academic Press 
504 |a Silver, M., Karel, M., The behabior of invertase in model systems at low moisture contents (1981) J Food Biochemistry, 5, pp. 283-311 
504 |a Drapron, R., Enzyme activity as a function of water activity (1985) Properties of water in foods, pp. 171-190. , Simatos D, Multon JL, editors. Dordrecht, Netherlands: Martinus Nijhof Publishers 
504 |a Le Meste, M., Voilley, A., Colas, B., Influence of water on the mobility of small molecules expresed in a polymeric system (1991) Water relationships in food, pp. 123-138. , Levine H, Slade L, editors. New York: Plenum Press 
504 |a Carpenter, J., Crowe, J., Modes of stabilization of a protein by organic solutes during desiccation (1988) Cryobiology, 25, pp. 459-470 
504 |a Crowe, J., Crowe, L., Chapman, D., Preservation of membranes in anhydrobiotic organisms: The role of trehalose (1984) Science, 223, pp. 701-703 
504 |a Crowe, J., Crowe, L., Chapman, D., Infrared spectroscopic studies on interactions of water and carbohydrates with a biological membrane (1984) Arch Biochem Biophys, 232, pp. 400-407 
504 |a Crowe, J., Crowe, L., Jackson, S., Preservation of structural and functional activity in lyophilized sarcoplasmic reticulum (1983) Arch Biochem Biophys, 220, pp. 477-484 
504 |a Crowe, J., Crowe, L., Carpenter, J., Aurell Wistrom, C., Stabilization of dry phospholipid bilayers and proteins by sugars (1987) Biochem J, 242, pp. 1-10 
504 |a Crowe, J., Spargo, B., Crowe, L., Preservation of dry liposomes does not require retention of residual water (1989) Proc Natl Acad Sci USA, 84, pp. 1537-1540 
504 |a Crowe, L., Reid, D., Crowe, J., Is trehalose special for preserving dry biomaterials? (1996) Biophysical J, 71, pp. 2087-2093 
504 |a Karel, M., Anglea, S., Buera, M.P., Karmas, R., Levi, G., Roos, Y., Stability-related transitions of amorphous foods (1994) Thermochimica Acta, 246, pp. 249-269 
504 |a Richardson, T., Hyslop, D.B., Enzymes (1985) Food chemistry, 2nd ed., pp. 371-476. , Fennema OR, editor. New York: Marcel Dekker 
504 |a Roos, Y., Role of water in phase - Transition phenomena in foods (1998) Phase/state transitions in foods. Chemical, structural, and reological changes, pp. 57-86. , Rao MA, Hartel RW, editors. New York: Marcel Dekker, Inc 
504 |a Slade, L., Levine, H., Beyond water activity: Recent advances based on an alternative approach to the assessment of food quality and safety (1991) Crit Rev Food Sci Nutr, 30, pp. 115-360 
504 |a Slade, L., Levine, H., Water and the glass transition - Dependence of the glass transition on composition and chemical structure: Special implication for flour functionality in cookie baking (1993) Proceedings of ISOPOW-V, , Simatos, D, editor. Water in foods: fundamental aspects and their significance in the processing of foods. London: Elsevier Applied Science 
504 |a Bell, L.N., Labuza, T.P., Compositional influence on the pH of reduced-moisture solutions (1992) J Food Sci, 57 (3), pp. 732-734 
504 |a Bell, L.N., Labuza, T.P., pH of low moisture solids (1992) Trends in Food Science & Technol, 3, pp. 271-273 
504 |a Bell, L.N., Labuza, T.P., Influence of the low-moisture state on pH and its implication for reaction kinetics (1994) J Food Engineering, 22, pp. 291-312 
504 |a Buera, M.P., Chirife, J., Karel, M., A study of acid-catalized sucrose hydrolysis in an amorphous poplymeric matrix at reduced moisture contents (1995) Food Res International, 28 (4), pp. 459-365 
504 |a Guy, E.J., Bingham, E.W., Properties of β-galactosidase of Saccharomyces lactis in milk and milk products (1978) J Dairy Science, 61, pp. 147-151 
504 |a Mahoney, R.R., Wilder, T., Stabilization of lactase (E. coli) by milk components and related compounds (1989) J Food Science, 54, pp. 899-901 
504 |a Flores, M., Ertola, R., Voget, G., Effect of monovalent cations on the stability and activity of Kluyveromyces lactis β-galactosidase (1996) Lebensm-Wiss u-Technol, 29, pp. 503-506 
504 |a Izutzu, K., Yoshioka, S., Takeda, Y., The effects of additives on the stability of freeze-dried β-galactosidase stored at elevated temperature (1991) Int J Pharmaceutics, 71, pp. 137-146 
504 |a Gekas, V., Lopez-Leiva, M., Hydrolysis of lactase: A literature review (1985) Process Biochemistry, pp. 2-12 
504 |a Saltmarch, S., Labuza, T.P., Influence of relative humidity on the physicochemical state of lactose in spray-dried sweet whey powders (1980) J Food Science, 45, pp. 1231-1242 
504 |a Jouppila, K., Roos, Y., Glass transitions and crystallization in milk powders (1994) J Dairy Sci, 77 (10), pp. 2907-2915 
504 |a White, K.L., Bell, L.N., Glucose loss and maillard browning in solids as affected by porosity and collapse (1999) Food Chemistry and Toxicology, 64 (6), pp. 1010-1014 
504 |a Mozhaev, V.V., Martinek, K.K., Inactivation and reactivation of proteins (enzymes) (1982) Enzyme Microb Technol, 4, pp. 299-309 
504 |a Palumbo, M.S., Smith, P.W., Strange, E.D., Van Hekken, D.L., Tunick, M.H., Holsinger, V.H., Stability of β-galactosidase from A. oryzae and K. lactis in dry milk powders (1995) J Food Science, 60, pp. 117-119 
504 |a Duckworth, R.B., The properties of water around the surfaces of food colloids (1972) Proc Inst Food Sci Technol, 5, pp. 60-66 
504 |a Voget, C., Flores, M., Faloci, M., Ertola, J., Effects of the ionic environment on the stability of Kluyveromyces lactis β-galactosidase (1994) Lebensm-Wiss u-Technol, 27, pp. 324-330 
504 |a Mahoney, R., Adamchuk, Effect of milk constituents on the hydrolysis of lactose by lactase from Kluyveromyces fragilis (1980) J Food Science, 45, p. 962 
504 |a Pitombo, N., Spring, C., Passos, R., Tonato, M., Vitolo, M., Effect of moisture content on the invertase activity of freeze-dried S. cerevisiae (1994) Cryobiology, 31, pp. 383-392 
504 |a Fox, T.G., Flory, P.J., Second order transition temperature and related properties of polyestirene. I. Influences of molecular weight (1950) J Appl Phys, 21, pp. 581-591 
504 |a Buera, M.P., Levi, G., Karel, M., Glass transition in poly(vinylpyrrolidone): Effect of molecular weight and diluents (1992) Biotechnol Prog, 8, pp. 144-148 
504 |a Gidley, M., Gothard, M., Darke, A., Cooke, D., Thermal properties of polysaccharides at low moisture: Part 3 - Comparative behaviour of guar gum and dextran (1998) The properties of water in foods. ISOPOW 6, pp. 179-190. , Reid DS, editor. Philadelphia: Backie Academic & Professional, Thomson Science 
504 |a Chen, Y.H., Aull, J.L., Bell, L.N., Invertase storage stability and sucrose hydrolysis in solids as affected by water activity and glass transition (1999) J Agric Food Chemistry, 47 (2), pp. 504-509 
504 |a Slade, L., Levine, H., Beyond water activity: Recent advances based on an alternative approach to the assessment of food quality and safety (1994) Crit Rev Food Sci Nutr, 30, pp. 115-160 
504 |a Kouassi, K., Roos, Y., Glass transition and water effects on sucrose inversion by invertase in a lactose-sucrose system (2000) J Agric Food Chem, 48, pp. 2461-2466 
504 |a Kouassi, K., Roos, Y.H., Glass transition and water effects on sucrose inversion in noncrystalline carbohydrate food systems (2001) Food Res Int, 34, pp. 895-901 
520 3 |a Enzymatic activity observed in low moisture systems has been analyzed from several standpoints. The rates of enzymatic reactions depend on many factors, the molecular mobility of the reactants and the properties of the matrices in which they are embedded (pH, viscosity, ionic strength) being often controlling aspects. The objective of present work was to investigate β-galactosidase activity as affected by pH-moisture dependence and by physical properties of the matrix in reduced moisture systems of whey (W) and dextranes (Dx). β-galactosidase from 3 different sources, Escherichia coli, Aspergillus oryzae, and Saccharomyces lactis, were tested. β-galactosidase activity from S. lactis was reduced in W systems. pH-moisture dependence was proposed as the main cause of this low activity. The decrease of apparent pH upon water removal and the molecular mobility of the polymeric matrix, and of the enzyme, which is related to their size, appear to be more significant factors than the actual value of the glass transition temperature (Tg) of the matrix on β- galactosidase activity. Therefore, all properties concerning physico-chemical aspects have to be considered to analyze enzyme activity in low moisture biomaterials. © 2002 Elsevier Science Inc. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PIP-CONICET 02734, PICT 09-06251, BID 1201 OC-AR 
536 |a Detalles de la financiación: International Foundation for Science 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: The authors acknowledge financial support from Universidad de Buenos Aires (Proyecto IX05) (Secretarı́a de Ciencia y Técnica), Agencia Nacional de Promoción Cientı́fica y Tecnológica BID 1201 OC-AR, PICT 09-06251, PIP-CONICET 02734 and from the International Foundation for Science (Sweden). We appreciate greatly the comments and suggestions given by Carolina Schebor during the preparation of the manuscript. 
593 |a Departamento De Industrias, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, 1428 Buenos Aires, Argentina 
690 1 0 |a Β-GALACTOSIDASE ACTIVITY 
690 1 0 |a GLASS TRANSITION 
690 1 0 |a LOW MOISTURE 
690 1 0 |a MOBILITY 
690 1 0 |a BIOMATERIALS 
690 1 0 |a GLASS TRANSITION 
690 1 0 |a IONIC STRENGTH 
690 1 0 |a MOISTURE 
690 1 0 |a MOLECULAR BIOLOGY 
690 1 0 |a PHYSICAL CHEMISTRY 
690 1 0 |a POLYMERS 
690 1 0 |a POLYMERIC MATRIX 
690 1 0 |a ENZYMES 
690 1 0 |a BETA GALACTOSIDASE 
690 1 0 |a BIOMATERIAL 
690 1 0 |a DEXTRAN DERIVATIVE 
690 1 0 |a WATER 
690 1 0 |a ASPERGILLUS ORYZAE 
690 1 0 |a CONFERENCE PAPER 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a ESCHERICHIA COLI 
690 1 0 |a GLASS TRANSITION TEMPERATURE 
690 1 0 |a IONIC STRENGTH 
690 1 0 |a MOISTURE 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a NONHUMAN 
690 1 0 |a PHYSICAL CHEMISTRY 
690 1 0 |a SACCHAROMYCES 
690 1 0 |a SACCHAROMYCES LACTIS 
690 1 0 |a VISCOSITY 
690 1 0 |a WHEY 
690 1 0 |a ASPERGILLUS 
690 1 0 |a ASPERGILLUS ORYZAE 
690 1 0 |a ESCHERICHIA COLI 
690 1 0 |a SACCHAROMYCES 
650 1 7 |2 spines  |a PH 
650 1 7 |2 spines  |a PH 
700 1 |a Del Pilar Buera, M. 
773 0 |d 2002  |g v. 30  |h pp. 367-373  |k n. 3  |p Enzyme Microb. Technol.  |x 01410229  |w (AR-BaUEN)CENRE-1003  |t Enzyme and Microbial Technology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037070487&doi=10.1016%2fS0141-0229%2801%2900509-9&partnerID=40&md5=db0238380594e34bad9472bb94db4186  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/S0141-0229(01)00509-9  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01410229_v30_n3_p367_Burin  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01410229_v30_n3_p367_Burin  |y Registro en la Biblioteca Digital 
961 |a paper_01410229_v30_n3_p367_Burin  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 66367