A fourth order elliptic equation with nonlinear boundary conditions

Variational techniques were used to prove the existence of nontrivial solutions to the fourth order elliptic equation with nonlinear boundary conditions. Abstract results from the critical point theory, some topological tools and Sobolev trace inequalities were used to deal with the boundary terms o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fernández Bonder, J.
Otros Autores: Rossi, J.D
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2002
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05047caa a22006137a 4500
001 PAPER-5314
003 AR-BaUEN
005 20230518203457.0
008 190411s2002 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0036643023 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a NOAND 
100 1 |a Fernández Bonder, J. 
245 1 2 |a A fourth order elliptic equation with nonlinear boundary conditions 
260 |c 2002 
270 1 0 |m Bonder, J.F.; Departamento de Matemática, FCEyN, UBA (1428), Buenos Aires, Argentina; email: jfbonder@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Adams, R.A., (1975) Sobolev Spaces, , Academic Press, New York 
504 |a Ambrosetti, A., Rabinowitz, P.H., Dual variational methods in critical point theory and applications (1973) J. Funct. Anal., 14 (4), pp. 349-381 
504 |a Bernis, F., Garcia-Azorero, J., Peral, I., Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order (1996) Adv. Differential Equations, 1 (2), pp. 219-240 
504 |a Chipot, M., Shafrir, I., Fila, M., On the solutions to some elliptic equations with nonlinear Neumann boundary conditions (1996) Adv. Differential Equations, 1 (1), pp. 91-110 
504 |a Coffman, C.V., A minimum-maximum principle for a class of nonlinear integral equations (1969) J. Anal. Math., 22, pp. 391-419 
504 |a De Figueiredo, D.G., Semilinear elliptic systems: A survey of superlinear problems (1996) Resenhas IME-USP, 2, pp. 373-391 
504 |a Edmunds, D.E., Fortunato, D., Janelli, E., Critical exponents, critical dimension and the biharmonic operator (1990) Arch. Rational Mech. Anal., 112, pp. 269-289 
504 |a Felmer, P., Periodic solutions of 'superquadratic' Hamiltonian systems (1993) J. Differential Equations, 102, pp. 188-207 
504 |a Gilbarg, D., Trudinger, N.S., (1983) Elliptic Partial Differential Equations of Second Order, , Springer, New York 
504 |a Hu, B., Non existence of a positive solution of the Laplace equation with a nonlinear boundary condition (1994) Differential Integral Equations, 7, pp. 301-313 
504 |a Krasnoselski, M.A., (1964) Topological methods in the theory of nonlinear integral equations, , Macmillan, New York 
504 |a Lions, P.L., The concentration-compactness principle in the calculus of variations, The limit case, part 1 (1985) Rev. Mat. Iberoamericana, 1 (1), pp. 145-201 
504 |a Lions, P.L., The concentration-compactness principle in the calculus of variations, The limit case, part 2 (1985) Rev. Mat. Iberoamericana, 1 (2), pp. 45-121 
504 |a Noussair, E.S., Swanson, C.A., Jianfu, Y., Critical semilinear biharmonic equations in RN (1992) Proc. Roy. Soc. Edinburgh, 121 A, pp. 139-148 
504 |a Pucci, P., Serrin, J., Critical exponents and critical dimensions for polyharmonic operators (1990) J. Math. Pure Appl., 69, pp. 55-83 
504 |a Rabinowitz, P., Minimax methods in critical point theory with applications to differential equations (1986) CBMS Regional Conference Series in Mathematics, 65. , American Mathematical Society, Providence, RI 
520 3 |a Variational techniques were used to prove the existence of nontrivial solutions to the fourth order elliptic equation with nonlinear boundary conditions. Abstract results from the critical point theory, some topological tools and Sobolev trace inequalities were used to deal with the boundary terms of the subcritical superlinear nonlinearity problem. A critical nonlinearity with a sublinear perturbation was studied by applying concentration compactness method combined with topological arguments.  |l eng 
593 |a Departamento De Matemática, FCEyN, UBA (1428), Buenos Aires, Argentina 
690 1 0 |a BILAPLACIAN 
690 1 0 |a NONLINEAR BOUNDARY CONDITIONS 
690 1 0 |a VARIATIONAL PROBLEMS 
690 1 0 |a BOUNDARY CONDITIONS 
690 1 0 |a MATHEMATICAL OPERATORS 
690 1 0 |a PERTURBATION TECHNIQUES 
690 1 0 |a VARIATIONAL TECHNIQUES 
690 1 0 |a ELLIPTIC EQUATIONS 
690 1 0 |a NONLINEAR EQUATIONS 
700 1 |a Rossi, J.D. 
773 0 |d 2002  |g v. 49  |h pp. 1037-1047  |k n. 8  |p Nonlinear Anal Theory Methods Appl  |x 0362546X  |w (AR-BaUEN)CENRE-254  |t Nonlinear Analysis, Theory, Methods and Applications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036643023&doi=10.1016%2fS0362-546X%2801%2900718-0&partnerID=40&md5=65278b27964c8954961f694bfa3b7122  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/S0362-546X(01)00718-0  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0362546X_v49_n8_p1037_FernandezBonder  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v49_n8_p1037_FernandezBonder  |y Registro en la Biblioteca Digital 
961 |a paper_0362546X_v49_n8_p1037_FernandezBonder  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 66267