A fourth order elliptic equation with nonlinear boundary conditions
Variational techniques were used to prove the existence of nontrivial solutions to the fourth order elliptic equation with nonlinear boundary conditions. Abstract results from the critical point theory, some topological tools and Sobolev trace inequalities were used to deal with the boundary terms o...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2002
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 05047caa a22006137a 4500 | ||
|---|---|---|---|
| 001 | PAPER-5314 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518203457.0 | ||
| 008 | 190411s2002 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-0036643023 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a NOAND | ||
| 100 | 1 | |a Fernández Bonder, J. | |
| 245 | 1 | 2 | |a A fourth order elliptic equation with nonlinear boundary conditions |
| 260 | |c 2002 | ||
| 270 | 1 | 0 | |m Bonder, J.F.; Departamento de Matemática, FCEyN, UBA (1428), Buenos Aires, Argentina; email: jfbonder@dm.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Adams, R.A., (1975) Sobolev Spaces, , Academic Press, New York | ||
| 504 | |a Ambrosetti, A., Rabinowitz, P.H., Dual variational methods in critical point theory and applications (1973) J. Funct. Anal., 14 (4), pp. 349-381 | ||
| 504 | |a Bernis, F., Garcia-Azorero, J., Peral, I., Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order (1996) Adv. Differential Equations, 1 (2), pp. 219-240 | ||
| 504 | |a Chipot, M., Shafrir, I., Fila, M., On the solutions to some elliptic equations with nonlinear Neumann boundary conditions (1996) Adv. Differential Equations, 1 (1), pp. 91-110 | ||
| 504 | |a Coffman, C.V., A minimum-maximum principle for a class of nonlinear integral equations (1969) J. Anal. Math., 22, pp. 391-419 | ||
| 504 | |a De Figueiredo, D.G., Semilinear elliptic systems: A survey of superlinear problems (1996) Resenhas IME-USP, 2, pp. 373-391 | ||
| 504 | |a Edmunds, D.E., Fortunato, D., Janelli, E., Critical exponents, critical dimension and the biharmonic operator (1990) Arch. Rational Mech. Anal., 112, pp. 269-289 | ||
| 504 | |a Felmer, P., Periodic solutions of 'superquadratic' Hamiltonian systems (1993) J. Differential Equations, 102, pp. 188-207 | ||
| 504 | |a Gilbarg, D., Trudinger, N.S., (1983) Elliptic Partial Differential Equations of Second Order, , Springer, New York | ||
| 504 | |a Hu, B., Non existence of a positive solution of the Laplace equation with a nonlinear boundary condition (1994) Differential Integral Equations, 7, pp. 301-313 | ||
| 504 | |a Krasnoselski, M.A., (1964) Topological methods in the theory of nonlinear integral equations, , Macmillan, New York | ||
| 504 | |a Lions, P.L., The concentration-compactness principle in the calculus of variations, The limit case, part 1 (1985) Rev. Mat. Iberoamericana, 1 (1), pp. 145-201 | ||
| 504 | |a Lions, P.L., The concentration-compactness principle in the calculus of variations, The limit case, part 2 (1985) Rev. Mat. Iberoamericana, 1 (2), pp. 45-121 | ||
| 504 | |a Noussair, E.S., Swanson, C.A., Jianfu, Y., Critical semilinear biharmonic equations in RN (1992) Proc. Roy. Soc. Edinburgh, 121 A, pp. 139-148 | ||
| 504 | |a Pucci, P., Serrin, J., Critical exponents and critical dimensions for polyharmonic operators (1990) J. Math. Pure Appl., 69, pp. 55-83 | ||
| 504 | |a Rabinowitz, P., Minimax methods in critical point theory with applications to differential equations (1986) CBMS Regional Conference Series in Mathematics, 65. , American Mathematical Society, Providence, RI | ||
| 520 | 3 | |a Variational techniques were used to prove the existence of nontrivial solutions to the fourth order elliptic equation with nonlinear boundary conditions. Abstract results from the critical point theory, some topological tools and Sobolev trace inequalities were used to deal with the boundary terms of the subcritical superlinear nonlinearity problem. A critical nonlinearity with a sublinear perturbation was studied by applying concentration compactness method combined with topological arguments. |l eng | |
| 593 | |a Departamento De Matemática, FCEyN, UBA (1428), Buenos Aires, Argentina | ||
| 690 | 1 | 0 | |a BILAPLACIAN |
| 690 | 1 | 0 | |a NONLINEAR BOUNDARY CONDITIONS |
| 690 | 1 | 0 | |a VARIATIONAL PROBLEMS |
| 690 | 1 | 0 | |a BOUNDARY CONDITIONS |
| 690 | 1 | 0 | |a MATHEMATICAL OPERATORS |
| 690 | 1 | 0 | |a PERTURBATION TECHNIQUES |
| 690 | 1 | 0 | |a VARIATIONAL TECHNIQUES |
| 690 | 1 | 0 | |a ELLIPTIC EQUATIONS |
| 690 | 1 | 0 | |a NONLINEAR EQUATIONS |
| 700 | 1 | |a Rossi, J.D. | |
| 773 | 0 | |d 2002 |g v. 49 |h pp. 1037-1047 |k n. 8 |p Nonlinear Anal Theory Methods Appl |x 0362546X |w (AR-BaUEN)CENRE-254 |t Nonlinear Analysis, Theory, Methods and Applications | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036643023&doi=10.1016%2fS0362-546X%2801%2900718-0&partnerID=40&md5=65278b27964c8954961f694bfa3b7122 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1016/S0362-546X(01)00718-0 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_0362546X_v49_n8_p1037_FernandezBonder |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v49_n8_p1037_FernandezBonder |y Registro en la Biblioteca Digital |
| 961 | |a paper_0362546X_v49_n8_p1037_FernandezBonder |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 963 | |a VARI | ||
| 999 | |c 66267 | ||