Stereoelectronic contributions to long-range 1H-1H coupling constants

The contribution of stereoelectronic interactions to NMR coupling constants 3JHH and 4JHH has been examined using ab initio calculations and natural bond orbital (NBO) analysis on four model compounds: ethane, propane, propene, and methylcyclopropane. The main stereoelectronic contributions to the c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Sproviero, E.M
Otros Autores: Burton, G.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2002
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07979caa a22008777a 4500
001 PAPER-5246
003 AR-BaUEN
005 20230518203453.0
008 190411s2002 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0037194583 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JPCAF 
100 1 |a Sproviero, E.M. 
245 1 0 |a Stereoelectronic contributions to long-range 1H-1H coupling constants 
260 |c 2002 
270 1 0 |m Burton, G.; Departamento de Quimica Organica, Ciudad Universitaria, Universidad de Buenos Aires, Pabello 2, C1428EHA Buenos Aires, Argentina; email: burton@qo.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a (1999) 12th National Symposium of Organic Chemistry (XII SINAQO), 5, p. 539. , Los Cocos, Argentina, November. Abstract published in Molecules [online computer file] 
504 |a Pople, J.A., Schneider, W.G., Bernstein, H.J., (1959) High-Resolution NMR, , McGraw-Hill: New York 
504 |a Ramsey, N.F., (1953) Phys. Rev., 91, p. 303 
504 |a Lemieux, R.U., Kullnig, R.K., Berstein, H.J., Schneider, W.G., (1957) J. Am. Chem. Soc., 79, p. 1005 
504 |a Karplus, M., (1959) J. Chem. Phys., 30, p. 11 
504 |a McConnell, H.M., (1957) J. Mol. Spectrosc., 1, p. 11 
504 |a Hoffman, R.A., (1958) Mol. Phys., 1, p. 326 
504 |a Barfield, M., Chakrabarti, B., (1969) Chem. Rev., 69, p. 757 
504 |a Murrel, J.N., (1970) Prog. NMR Spectrosc., 6, p. 1 
504 |a Günther, H., Jikeli, G., (1977) Chem. Rev., 77, p. 599 
504 |a Kowalewski, J., (1977) Prog. NMR Spectrosc., 11, p. 1 
504 |a Engelmann, R., Facelli, J.C., Contreras, R.H., (1981) Theor. Chim. Acta, 59, p. 17 
504 |a Engelmann, R., Contreras, R.H., (1983) Int. J. Quantum Chem., 23, p. 1033 
504 |a Contreras, R.H., Natiello, M.A., Scuseria, G.E., (1985) Magn. Reson. Rev., 9, p. 239 
504 |a Contreras, R.H., Ruiz de Azúa, M.C., Giribet, C.G., Ferraro, M.B., Diz, A.C., (1989) Nuevas Tendencias-Química Teórica;, 2. , Fraga, S., Ed.; CSIC: Madrid, Chapter 16 
504 |a Parr, W.J.E., Schaefer, T., (1980) Acc. Chem. Res., 13, p. 400 
504 |a Dewar, M.J.S., Dougherty, R.C., (1975) The PMO Theory of Organic Chemistry, , Plenum: New York 
504 |a Dewar, M.J.S., (1984) J. Am. Chem. Soc., 106, p. 669 
504 |a Reed, E., Curtiss, L.A., Weinhold, F.A., (1988) Chem. Rev., 88, p. 899 
504 |a Reed, A.E., Weinhold, F., (1991) Isr. J. Chem., 31, p. 277 
504 |a Edison, S., Markley, J.L., Weinhold, F., (1994) J. Biomol. NMR, 4, p. 519 
504 |a Esteban, A.L., Galache, M.P., Mora, F., Díez, E., Casanueva, J., San Fabián, J., Barone, V., Contreras, R.H., (2001) J. Phys. Chem. A, 105, p. 5298 
504 |a Wilkens, S.J., Westler, W.M., Markley, J.L., Weinhold, F., (2001) J. Am. Chem. Soc., 123, p. 12026 
504 |a Peralta, J.E., Contreras;, R.H., Snyder, J.P., (2000) Chem. Commun., p. 2025 
504 |a Suarez, D., Sordo, T.L., Sordo, J.A., (1996) J. Am. Chem. Soc., 118, p. 9850 
504 |a Salzner, U., (1995) J. Org. Chem., 60, p. 986 
504 |a Barfield, M., (1964) J. Chem. Phys., 41, p. 3825 
504 |a Diz, C., Ruiz de Azua, M.C., Giribet, C.G., Contreras, R.H., (1990) Int. J. Quantum Chem., 27, p. 663 
504 |a Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Pople, J.A., (1998) Gaussian 98, Revision A.7, , Gaussian, Inc.: Pittsburgh, PA 
504 |a Lazzeretti, P., Zanasi, R., (1982) J. Chem. Phys., 77, p. 2448 
504 |a Lazzeretti, P., (1979) Int. J. Quantum Chem., 15, p. 181 
504 |a Lazzeretti, P., (1979) J. Chem. Phys., 71, p. 2514 
504 |a Contreras, R.H., Peralta, J.E., (2000) Prog. NMR Spectrosc., 37, p. 321 
504 |a Glendening, E.D., Reed, A.E., Carpenter, J.E., Weinhold, F., NBO, version 3.1 
504 |a Jörgensen, P., Simons, J., (1981) Second Quantization Based Methods in Quantum Chemistry, , Academic Press: New York, Chapter 6 
504 |a Sproviero, E.M., Ferrara, A., Contreras, R.H., Burton, G., (1996) J. Chem. Soc., Perkin Trans., 2, p. 933. , and references therein 
504 |a Karplus, M., (1960) J. Chem Phys., 33, p. 1842 
504 |a Karplus, M., (1969) J. Chem. Phys., 50, p. 3133 
504 |a Barfield, M., Dean, A.M., Fallick, C.J., Spear, R.J., Sternhell, S., Westerman, P.W., (1975) J. Am. Chem. Soc., 97, p. 1482 
520 3 |a The contribution of stereoelectronic interactions to NMR coupling constants 3JHH and 4JHH has been examined using ab initio calculations and natural bond orbital (NBO) analysis on four model compounds: ethane, propane, propene, and methylcyclopropane. The main stereoelectronic contributions to the couplings originate in three-bond (vicinal) interactions and in through-space interactions. In ethane, besides the main contribution of the σ(C-H) → σ*(C-H) interaction, other interactions present in the molecule make a decisive contribution to the angular dependence of 3J. In the H1-C-C-C-Hanti moiety of propane, 4JHH has important contributions from vicinal interactions that include the anti proton while in the H1-C-C-C-Hgauche moiety the main contributions are vicinal interactions that include H1. In alkene fragments, vicinal interactions that involve the π orbitals are the most important contributions to the couplings. Sigma vicinal interactions, which include orbitals corresponding to C-H bonds that involve either of the coupled protons, are crucial to elucidate differences between cisoid and transoid coupling constants. In the case of methylcyclopropane, the most important contributions to the coupling of the syn cyclopropyl H come from the σ(C-H) → σ*(Ccyclopropane-Ccyclopropane) and σ(Ccyclopropane-Ccyclopropane) → σ*(C-H) vicinal interactions (where the H corresponds to the non-cyclopropyl hydrogen). The concerted effect of several interactions that contribute toward a trend similar to that shown by allyl-vinyl proton couplings is in accordance with a significant π contribution of the Ccyclopropane-Ccyclopropane bond. For the anti cyclopropyl proton, vicinal interactions of the form σ(C-Hanti) → σ*(Ccyclopropane-C) and σ(Ccyclopropane-C) → σ*(C-Hanti) are the main contributors to the angular variation of the couplings, similar to what happens to the anti proton in propane. As a whole, the overall behavior of these couplings resembles that of the equivalent proton in propane. In addition, in this case there is not a unique set of interactions which accounts for the overall angular variation of 4J.  |l eng 
593 |a Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, (C1428EHA) Buenos Aires, Argentina 
690 1 0 |a NATURAL BOND ORBITAL (NBO) ANALYSIS 
690 1 0 |a STEREOELECTRONIC INTERACTIONS 
690 1 0 |a HYDROGEN BONDS 
690 1 0 |a MOLECULAR STRUCTURE 
690 1 0 |a NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 
690 1 0 |a POLARIZATION 
690 1 0 |a PROTONS 
690 1 0 |a HYDROCARBONS 
700 1 |a Burton, G. 
773 0 |d 2002  |g v. 106  |h pp. 7834-7843  |k n. 34  |p J Phys Chem A  |x 10895639  |t Journal of Physical Chemistry A 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037194583&doi=10.1021%2fjp020197c&partnerID=40&md5=4c9f178c082002ce561dcb13b57339cb  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/jp020197c  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10895639_v106_n34_p7834_Sproviero  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10895639_v106_n34_p7834_Sproviero  |y Registro en la Biblioteca Digital 
961 |a paper_10895639_v106_n34_p7834_Sproviero  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 66199